The Sun's Magnetic Cycle



During the time when Gauss was studying the Earth's magnetic field, elsewhere in Germany a serious amateur astronomer named Heinrich Schwabe (Shwah-bay), a pharmacist by trade, was searching for a new unknown planet. That planet, tentatively named "Vulcan," was expected to be inside the orbit of Mercury, so close to the Sun that its presence became evident only when it passed between us and the Sun, a dark spot crawling across the solar disk. However, the Sun also had dark "sunspots" of its own, and to tell these apart from a new planet, Schwabe kept track of them as well.

 Variation of the observed "sunspot number"
Vulcan doesn't exist--it was never seen in any total eclipse. However, after a decade and more of diligent observations, Schwabe found something that had eluded all astronomers of the preceding two centuries--since sunspots were first reported by Galileo and Christopher Scheiner. He found that the number of sunspots rose and fell in a nearly regular cycle, lasting about 11 years. Interestingly, it soon turned out that big "magnetic storms" when the magnetic field was disturbed (typically by up to 1%) seemed to occur most frequently during the years with the most sunspots.

What were sunspots? Galileo had guessed they were clouds floating in the Sun's atmosphere, obscuring some of its light. Their true nature only emerged in 1908 when George Elery Hale, leader among US astronomers, showed that they were intensely magnetic. Their magnetic field was as strong as that of a small iron magnet, some 3000 times stronger than the field near the surface of the Earth--yet those fields often extended over areas larger than the entire surface of the Earth. Apparently the magnetic field somehow slowed down the flow of heat from the Sun's interior, causing the sunspots to be slightly darker than the rest of the Sun.

The evidence for sunspot magnetism was their emitted light. Glowing gases emit light in narrowly defined wavelengths (i.e. colors), a different set for each substance. In 1897, however, Pieter Zeeman found that when such light was emitted from the region of a strong magnetic field, the emission split into slightly different wavelengths, with a separation that increased with the strength of the field. The colors of the light emitted from sunspots were "split up" in just this way.

The method was later improved by Babcock and others, allowing astronomers to observe not only the magnetic field of sunspots but also the weak fields near the Sun's poles. It turned out that the Sun has a polar field somewhat like the Earth's, but that it reverses its polarity during each 11-year cycle.

Sunspots have also led us to a better understanding of the Earth's own magnetic field. The face of the Sun consists of ionized hot gas ("plasma"), hot enough to conduct electricity. Sunspot fields were evidently produced by electric currents, and it was well known that such currents could be generated by a "dynamo process," by the motion of an electric conductor (e.g. the flow of solar plasma) through a magnetic field.

In 1919 Sir Joseph Larmor proposed that the fields of sunspots were due to such dynamo currents. He suggested that a closed chain of cause-and-effect existed, in which the field created by these currents was also the field which made them possible, the field in which the plasma's motion generated the required currents. Many features of sunspots remain a mystery, but Larmor's idea opened an era of new understanding of magnetic processes in the Earth's core.


Click here for Schwabe's original article in which he first reported his observations of a sunspot cycle.


################################

#16a.     Discovery of the Sunspot Cycle

Excerpts from Solar Observations During 1843 by Heinrich Schwabe, (Astronomische Nachrichten, vol. 20., no. 495, 1843)

The weather throughout this year was so extremely favorable that I have been able to observe the Sun clearly on 312 days; however, I counted only 34 groups of sunspots....

From my earlier observations, which I have reported every year in this journal, it appears that there is a certain periodicity in the appearance of sunspots and this theory seems more and more probable from the results of this year. ...I should like now to add a complete report of all my observations of sunspots up to the present, in which I have indicated the number of days of observation and the days when there were no spots to be seen, as well as the number of groups.

Year No. of Clusters Days when no
Spots were observed
Observation Days
1826 118 22 277
1827 161 2 273
1828 225 0 282
1829 199 0 244
1830 190 1 217
1831 149 3 239
1832 84 49 270
1833 33 139 267
1834 51 120 273
1835 173 18 244
1836 272 0 200
1837 333 0 168
1838 282 0 202
1839 162 0 205
1840 152 3 263
1841 102 15 283
1842 68 64 307
1843 34 149 324


################################


The Dynamo Process


A dynamo (or electric generator) is a device converting the energy of motion to that of an electric current.

The concept goes back to Michael Faraday (1791-1867). The son of a poor blacksmith, Faraday was apprenticed to a bookbinder and taught himself by reading books brought to be rebound. He rose to become Britain's foremost scientist, famous for his brilliant insights and his popular lectures. Faraday discovered that by moving a magnet next to a closed electric circuit, or changing the magnetic field passing through it, an electric current could be "induced" to flow in it. That "electromagnetic induction" remains the principle behind electric generators, transformers and many other devices.

 Faraday's disk dynamo
Faraday showed that another way of inducing the current was to move the electric conductor while the magnetic source stood still. This was the principle behind his disk dynamo, which featured a conducting disk spinning in a magnetic field--in the drawing, spun up by a belt and a pulley on the left. The electric circuit was then completed by stationary wires touching the disk on its rim and on its axle, shown on the right side of the drawing. This is not a very practical dynamo design (unless one seeks to generate huge currents at very low voltages), but in the large-scale universe, most currents are apparently produced by motions of this sort.

  The Waterloo Bridge experiment
    Faraday's moving conductor of electricity was solid (e.g. a copper disk), but a circulating fluid can also create such currents. Faraday was aware of the possibility of such "fluid dynamos," and accordingly he tried to measure the electric current created by the flow of London's river Thames across the Earth's magnetic field. He stretched a wire across London's Waterloo bridge (drawing), dipped its ends into the river and tried to measure the induced flow of electricity (curved line of small arrows). Small voltages due to chemical processes prevented him from observing the effect, but the idea was sound.

Faraday even speculated (incorrectly) that the flow of the Gulf Stream in the Atlantic Ocean was somehow electrically linked to the high atmosphere, powering there an electric discharge which (in his view) was the polar aurora ("Northern Lights").

Faraday's disk dynamo needs a magnetic field in order to produce an electric current. Is it possible for the current which it generated to also produce the magnetic field which the dynamo process required? That, in a nutshell, was what Larmor proposed was happening in sunspots.

At first sight this looks like a "chicken and egg" propostion: to produce a chicken, you need an egg, but to produce an egg you need a chicken--so which of these came first? Similarly here--to produce a current, you need a magnetic field, but to produce a magnetic field you need a current. Where does one begin? Actually, weak magnetic fields are always present and would be gradually amplified by the process, so this poses no obstacle.

One could, for instance, link two Faraday dynamos, each supplying the current needed to produce the other's magnetic field. They could (in principle) form a feasible self-excited dynamo, deriving its energy from whatever force was turning the disks. However, whether a fluid dynamo could mimic this behavior--e.g. swirls of fluid flow in a tank of liquid mercury--is a much harder question and took decades to resolve.


################################


#25b.     The Io Dynamo

The giant planet Jupiter has four large moons, discovered by Galileo and visible through good binoculars. It has in addition many smaller ones, as well as a narrow ring like Saturn's, observed by the spacecraft Pioneer 11.

Of the large moons--comparable to our own moon or bigger--the outer three are icy spheres, but the innermost one, Io, is heated by tides, and as a result has volcanoes and an ionosphere which is a fair conductor of electricity. Jupiter itself like Earth is a magnet, but one that is 20,000 times stronger; as a result it has a large magnetosphere and a very intense radiation belt.

A dynamo is created in a magnetic field by an electric circuit, part of which is moving relative to the rest (additional conditions must also be met). The circuit may consist entirely of fluids (as in sunspots), but solid conductors can also be involved.

The conditions for a dynamo are fulfilled in the case of Io and and Jupiter. Both are conductors, and they move quite differently--Io orbits, Jupiter rotates. Furthermore, the plasma between them conducts electricity very well along its magnetic field lines, which act as if they were wires connecting Io and the planet (drawing). One expects a continuous current to flow in this circuit, feeding on Io's orbital energy.

The drawing is not to scale. Actually Io is much smaller. Watchful readers may notice that the north-south magnetic polarity of Jupiter is the reverse of what it is for Earth. They might also note that if the drawing views Jupiter from the Sun's side, Io actually orbits in a direction opposite to that of the arrow. However, the plasma which fills space around it rotates with Jupiter and moves much faster, overtaking Io. Relative to the plasma, therefore, Io moves backwards.

The path of the space probe Voyager 1 was designed to check out this dynamo, by flying close to where its currents were expected to flow. It did so on March 5, 1979, and its magnetometer very clearly detected the signature of a current of about a million amperes. Previous to that it was noted that unlike any other moon of Jupiter, Io had a strong influence on radio emissions from Jupiter's magnetosphere, which depended on its position: it could be that the moon's unique electric currents were involved in this.

Postscripts

The Hubble Space Telescope, using its Wide Field and Planetary Camera 2, has been photographing auroras of the planet Jupiter. Recent pictures,taken in ultra-violet light, have shown not only rings of aurora around Jupiter's magnetic poles, but also a spot of light, formed where the magnetic field lines of Io reached the surface. Presumably, they represent a special kind of aurora, powered by the electric currents of the Io dynamo. A recent picture shows not only the footprint aurora of Io (which also leaves an auroral "trail" behind it), but also spots of light attributed to auroras formed in a similar manner by Europa and Ganymede, more distant moons of Jupiter.

See here for a picture of Io "in its true colors" and links to sites about it.


################################

#25c.     The Space Tether Experiment

The space tether experiment, a joint venture of the US and Italy, called for a scientific payload--a large, spherical satellite--to be deployed from the US space shuttle at the end of a conducting cable (tether) 20 km (12.5 miles) long. The idea was to let the shuttle drag the tether across the Earth's magnetic field, producing one part of a dynamo circuit. The return current, from the shuttle to the payload, would flow in the Earth's ionosphere, which also conducted electricity, even though not as well as the wire.

One purpose of such a set-up might be to produce electric power, generating current to run equipment aboard the space shuttle. That electric comes at a price: it is taken away from the motion energy ("kinetic energy") of the shuttle, since the magnetic force on the tether opposes the motion and slows it down. In principle, it should also be possible to reverse this process: a future space station could use solar cells to produce an electric current, which would be pumped into the tether in the opposite direction, so that the magnetic force would boost the orbital motion and would raise the orbit to a higher altitude.

An earlier tether experiment ended prematurely when problems arose with the deploying mechanism, but the one on February 25, 1996, began as planned, unrolling mile after mile of tether while the observed dynamo current grew at the predicted rate. The deployment was almost complete when the unexpected happened: the tether suddenly broke and its end whipped away into space in great wavy wiggles. The satellite payload at the far end of the tether remained linked by radio and was tracked for a while, but the tether experiment itself was over.

It took a considerable amount of detective work to figure out what had happened. Back on Earth the frayed end of the tether aboard the space shuttle was examined, and pieces of the cable were tested in a vacuum chamber. The nature of the break suggested it was not caused by excessive tension, but rather that an electric current had melted the tether.

The electric conductor of the tether was a copper braid wound around a nylon string. It was encased in teflon-like insulation, with an outer cover of kevlar, a tough plastic also used in bullet-proof vests, all this inside a nylon sheath. The culprit turned out to be the innermost core, made of a porous material which, during its manufacture, trapped many bubbles of air, at atmospheric pressure.

Later vacuum-chamber experiments suggested that the unwinding of the reel uncovered pinholes in the insulation. That in itself would not have caused a major problem, because the ionosphere around the tether, under normal circumstance, was too rarefied to divert much of the current. However, the air trapped in the insulation changed that. As it bubbled out of the pinholes, the high voltage ("electric pressure") of the nearby tether, about 3500 volts, converted it into a plasma (in a way similar to the ignition of a fluorescent tube), a relatively dense one and therefore a much better conductor of electricity.

The instruments aboard the tether satelite showed that this plasma diverted through the pinhole about 1 ampere, a current comparable to that of a 100-watt bulb (but at 3500 volts!), to the metal of the shuttle and from there to the ionospheric return circuit. That current was enough to melt the cable.

As the broken end whipped away from the shuttle, the plasma established electric contact with the ionosphere directly. The satellite on the distant end monitored the current: after about half a minute it stopped, then it reignited and flowed again for about another half minute, stopping for good when (presumably) all the trapped air was gone.

Because of the unexpected break, the tether experiment at the time was widely viewed by the press as an expensive failure. True, the planned operation at full deployment, for several hours, could not take place, nor could the tether and its satellite be retrieved, which was to have demonstrated the feasibility of deployable tethers.

However, many of the scientific experiments had already begun during deployment and yielded good data. And the break itself, though unfortunate, added an unscheduled experiment to the mission, one which highlighted the risks and complexities of operating scientific equipment in space.


################################


Origin of The Earth's Magnetism


Blackett's Proposal

It is an uncanny fact that the Earth's magnetic axis is close to its rotation axis--that the magnetic poles, where the magnetic force points straight down, are quite close to the geographical ones. William Gilbert saw it as evidence that rotation and magnetism arose from the same source:

    "Diurnal motion is due to causes which have now to be sought, arising from magnetick vigour and from the confederated bodies."

Gilbert thus believed the Earth rotated because it was magnetic. P.M. Blackett, who won the 1948 Nobel prize for his work on cosmic rays, seriously considered the opposite possibility--that the Earth was magnetic because it rotated around its axis. Blackett at one time suggested that perhaps a new universal phenomenon existed--that any rotating object was intrinsically magnetized.

At first this did not seem such a wild idea. Electrons and protons, for instance, do have an intrinsic "spin" giving them properties like those of a rotating solid object, and they also have an intrinsic magnetization, making them tiny magnets, lined-up with their spin axes. In ordinary materials, such atomic magnets point in all possible directions, so that their effects cancel.

But concerning the Earth, Blackett guessed wrong. Experiments with spinning objects, which by his theory should have produced measurable magnetization, showed none. Later observations also showed that during the last tens of millions of years, the magnetic polarity of the Earth reversed many times, something that Blackett's prediction would never allow.

      The core of the Earth

The Earth's Core

The way earthquake waves spread tells us that the Earth has at its center a dense liquid core, of about 1/2 the radius of the Earth--and inside that, a solid inner core. It is widely believed this core is made up of molten iron, perhaps mixed with nickel and sulfur. The density seems appropriate, and iron, which among all elements has the most stable nucleus, is abundant in the universe. It concentrated in the Earth's core because it is heavy--the same reason that, when it is extracted from its ores, it sinks to the bottom of the blast furnace.

Energy is the currency with which most processes in nature must be paid for. The Earth's magnetism is no exception, and its energy seemes to come from fluid motions in the Earth's core, from circulating flows that help get rid of heat produced there. In a similar way, our weather is driven by circulating air flows that help cool the ground, where much of sunlight is absorbed.

Scientists are still not sure about what provides the heat in the Earth's core. It might come from some of the iron becoming solid and joining the inner core, or perhaps it is generated by radioactivity, like the heat of the Earth's crust. The flows are very slow, and the energy involved is just a tiny part of the total heat energy contained in the core.

So the molten metal is believed to be circulating. By moving through the existing magnetic field, it creates a system of electric currents, spread out through the core, somewhat like Faraday's disk dynamo, discussed earlier. Currents create a magnetic field--a distribution of magnetic forces--and the essence of the self-sustaining dynamo problem is to find solutions such that the resulting magnetic field is also the input field required for generating the current in the first place.

Actually, that is only the lowest level of the problem, in which one is free to prescribe the motions. To solve the full problem, we also need information about the heat sources, and these sources must be able to drive motions which also solve the dynamo problem.

Such problems are not easy. They involve intricate mathematics and are not yet fully solved. Only the roughest ideas in their solutions can be outlined here.

The Sun's Magnetism

One limitation, related to the failure of Blackett's theory, is that any electric circuit rotating like a solid body will not produce "dynamo currents." Even if part of the circuit follows the axis of rotation, and can therefore be viewed as non-rotating, solid rotation will not create any currents. An essential feature of the Faraday disk dynamo is that part of its circuit is outside the disk, not sharing its rotation.

The rotation of the Sun around its axis, therefore, does not by itself contribute to its magnetism. What is important in this case is that the Sun does not rotate like a solid ball. Its equator has a shorter rotation period than higher latitudes-- about 25 days for the equator, 27 days for latitude 40 degrees (the Earth meanwhile moves some distance around the Sun, so from here the period seems to be 27 and 29 days). If Earth rotated that way, Florida (for instance) would soon pull away from the rest of the US, into the Atlantic Ocean. Such an uneven motion, deforming the surface, can drive a dynamo, and in the Sun's case, it is indeed believed to be the source of sunspot magnetism.

Dynamo Theory

Before mathematicians tackle a complex problem, they try out simple solutions (joke about a mathematician's model of milk production: "Assume a spherical cow of radius R, uniformly filled with milk... "). No such luck here: early in the game, in 1934, Thomas G. Cowling in England proved that any self-sustaining dynamo in the Earth's core cannot have an axis of symmetry.

Walter Elsasser, at the University of Utah (later at Johns Hopkins) launched in the 1940s a frontal attack on the full 3-dimensional problem. He got nowhere: the equations became more and more intricate and complicated the further one went into the details. Others had similar experiences. Only in 1964 did Stanislaw Braginsky in Russia publish the first valid solutions, by assuming that the field was almost axially symmetric and calculating its small deviations from symmetry.

The solution of the full problem, including heat flow, is much harder. Not only are we unsure of the source of heat, but any motions caused by it are greatly modified by the Earth's rotation. That modification is a major feature of large-scale motions in the atmosphere, causing hurricanes and storm systems to swirl in their characteristic ways. Eugene Parker in 1955 proposed a mechanism by which such swirling, in the rising flows of the Sun's atmosphere, could create dynamo fields.

As viewed from above, the swirling direction of storms in the atmosphere is always counterclockwise north of the equator and clockwise south of it. Such asymmetry is also expected in rising flows in the Earth's core, and Steenbeck et al., in Germany, showed in 1966 that thanks to it, disordered convection patterns can indeed produce an average "dynamo field. " That became known as the "alpha effect, " because it involved a mathematical quantity denoted by the Greek letter a (alpha)--but the details are far too complicated to be described here.


For some current work, simulating the dynamo on a computer, see web site by Gary Glatzmeier and Paul Roberts, here

################################


About Electronic Magnetometers and about Smoking


Fluxgate Magnetometers

  For more than 150 years the basic instrument for measuring magnetic fields resembled Coulomb's--a magnetic needle suspended at its middle from a fine fiber, or some modification of that arrangement. It was a delicate instrument, of limited accuracy, not suitable for rough handling.

  Around the time of World War II electronic instruments came into use. One type, still widely used, is the so-called fluxgate magnetometer, based on the saturation of magnetic materials.

  A typical electromagnet, such as is used in a relay or machinery, has an iron core around which the current-carrying coil is wound. The coil's magnetic field is greatly strengthened by the iron, because the iron atoms (or arrays of such atoms arranged in crystals) are magnetic.

  In ordinary iron, the magnetic axes of its atoms point in random directions, and the sum of their magnetic fields is close to zero. When current flows in the coil, however, its magnetic field lines up the magnetic axes of atoms in the core, and they add their magnetism to the one created by the electric current alone, making it much stronger.

  But there exists an obvious limit to the process: when all atoms are lined up, a condition known as the saturation magnetization of the iron, the iron core can provide no further help. If one further increases the current in the coil, the magnetic field only increases by the amount due to the electric current itself, with no contribution from the core.

  Materials exist--certain ferrites--where saturation occurs abruptly and completely, at a stably defined level. If a large enough alternating current is driven through a coil wrapped around a core of such material, the core's magnetic polarity flip-flops back and forth, and saturation occurs in each half of the cycle, in symmetric fashion.

  If however such an electromagnet is located in an existing magnetic field, directed (entirely or in part) along the axis of the ferrite core, that symmetry is upset. In the half of the cycle in which the field of the coil is added to the existing magnetization, saturation arrives a bit earlier, because it depends on the total magnetic intensity, external plus that of the coil. In the other half of the cycle, where the magnetization due to the coil opposes that of the existing field, it happens a bit later, because the sum of the two is somewhat weaker than the field of the coil alone. That asymmetry can be sensed electronically, and this is the basis of the operation of the fluxgate magnetometer.

  It does not sound like a sensitive effect--but it can be made quite sensitive by various tricks (e.g. replacing the rod-like magnetic cores with rings). A typical intensity of the magnetic field near the Earth's surface is 50,000 nanotesla (nT), while the fluxgate aboard Voyager 2 has observed with fair accuracy the interplanetary magnetic field near Uranus or Neptune, typically 100,000 times weaker. The Voyager 2 instrument resides at the end of a long boom, keeping it away from the magnetic interference of the currents aboard the spacecraft. Even though such currents are quite weak, they create enough of a magnetic field to disturb the readings of the sensitive magnetometer.

  Such instruments must be calibrated against known fields from a coil or in some other way.   Other types of electronic instruments also exist, e.g. those based on optical properties of certain metal vapors, but they are beyond the scope of this quick overview. Another kind is the proton precession magnetometer, briefly described in a lesson plan of the web course "From Stargazers to Starships" and involving the process of precession. It is the basis of "magnetic resonance imaging," a medical procedure for viewing "soft" internal organs which x-rays cannot observe, without any of the radiation damage which x-rays cause .

A Magnetometer study on the effect of Smoking

  Sensitive electronic magnetometers have many uses. They are of course indispensable aboard satellites, and on airplanes mapping the local structure of the Earth's field, e.g. when searching for oil. Airport gates use them for the detection of firearms, while stores and libraries tag their materials magnetically and use such gates to prevent anauthorized removal. The navy uses them to detect submarines under water, and they help surveyors locate boundary stakes buried in the ground or hidden by vegetation.

  Perhaps the most striking use of such an instrument was in the medical experiments of Dr. David Cohen at the Massachussetts Institute of Technology (MIT). Cohen's lab was lined with screening coils whose current canceled most of the outside geomagnetic field. Inside the lab he built a small room which shielded out any remaining magnetic influence. It had five sets of walls nested one inside the other, like Russian matrioshka dolls, separated by alternate layers of iron (to keep out constant magnetic fields) and aluminum (to shield against electromagnetic fluctuations).

  No detectable magnetic field reached the interior of the room, and some extremely sensitive magnetic observations could be conducted there. Cohen experimented there with magnetic signals from the heart and the brain, but his most intriguing result, published in 1979, concerned the human lungs. Air passages in the human body are lined with hair-like cilia, constantly waving back and forth and thus slowly sweeping out any dirt or debris deposited in them (Cohen called them "the moving carpet"). To find how well the lungs cleaned themselves in this fashion, Cohen had a dozen volunteers inhale small amounts of iron oxide dust, which is harmless but can be magnetized.

  Over the year that followed the quantity of dust remaining in their lungs was measured periodically, as follows. First each subject stood between a pair of coils, through which a large current was briefly passed. This magnetized the dust grains inside the lungs and aligned them with each other; since the grains gradually shifted out of alignment, they needed to be remagnetized at each visit. The subjects then climbed into the shielded room, where the strength of the magnetization of their chest area was measured.

  During the year of observations the amount of dust declined steadily in all subjects, first steeply and then more gradually, ending at about 10% of the original level. This showed that the lungs cleaned away debris quite efficiently. The surprise came from 3 additional subjects, added as an afterthought, all of them heavy smokers. Their lungs cleaned themselves much more slowly, and after one year, about 50% of the dust still remained.

  Cohen concluded that heavy smoking not only deposited tars in the lungs but also impaired their capacity to clean themselves. He speculated this might explain why a combination of heavy smoking and exposure to asbestos was associated with lung cancer far more frequently than might be expected by simply adding together the effects of smoking and asbestos separately. Not only did the asbestos promote cancer, but the tobacco tars and smoke hampered the natural process by which the lungs were sweeping it away.


Further Reading

  Cohen, David et al., Smoking Impairs Long-Term Dust Clearance from the Lung, Science, 204, 514-7, 4 May 1979

For readers with a technical background: A History of Vector Magnetometry in Space by Robert C. Snare, Institute of Geophysics and Planetary Physics, UCLA.

Ness, Norman F., Magnetometers for space research, Space Sci. Rev.,11, 459-554, 1970


################################


Magnetic Reversals and Moving Continents


Continents and Oceans

If you tabulate the elevations of all parts of the globe--including the ones covered by water--an interesting fact emerges. Those elevations--it turns out--are not smoothly distributed, but tend to cluster in one of two neighborhoods.

Most dry land has a modest elevation above sea level, while most of the ocean floor is about 3 kilometers (or 2 miles) lower down. The area of in-between depths, e.g. where the ocean is about 1 kilometer deep, is much less. An atlas will show that in the oceans around the continental US, for instance, for a certain distance from land the depth slowly increases, but then the sea-bottom plunges down steeply to the lower level, where it stays.

What does this mean? It means that the surface of the Earth is not a single terrain, varying smoothly, part of which happens to stick out above water. Rather, its regions belong to one of two types. The oceans tend to be uniformly deep, while the continents are separate chunks, thick enough to rise above water (or, at their edges, be covered by shallow seas).

      Alfred Wegener

Continental Drift

Alfred Wegener, a German arctic explorer and geophysicist who lived in the early 1900s, was struck by the resemblance between the continents and ice-floes in the arctic oceans, resulting from the break-up of sheets of floating sea-ice. Just as ice-floes which have broken apart match along the line of break, so did the edges of some continents match, e.g. Africa and South America. Maybe those land masses, too, used to be together?

Wegener found other corresponding matches, e.g. between rock formations along matching edges, and in 1918 he proposed his theory of "continental drift"--that continents, like ice floes, drifted from one location to another. He believed the continents floated on deeper layers below them, which over millions of years gave way like a thick fluid and made the drift possible. The energy source was supposedly the internal heat of the Earth.

Wegener's idea encountered enormous resistance from established geophysicists. Sir Harold Jeffreys in Britain, in particular, pointed out that the deeper layers were not nearly fluid enough and would strongly resist the proposed motion. After Wegener died on an arctic expedition, in 1931, only a handful of loyal supporters continued to promote his ideas. More evidence was needed, and it came from the Earth's magnetism.

Magnetic Reversals

After molten lava emerges from a volcano, it solidifies to a rock. In most cases it is a black rock known as basalt, which is faintly magnetic, like iron emerging from a melt--for which Gilbert already noticed a similar process. Its magnetization is in the direction of the local magnetic force at the time when it cools down.

Instruments can measure the magnetization of basalt. Therefore, if a volcano has produced many lava flows over a past period, scientists can analyze the magnetizations of the various flows and from them get an idea on how the direction of the local Earth's field varied in the past. Surprisingly, this procedure suggested that times existed when the magnetization had the opposite direction from today's. All sorts of explanation were proposed, but in the end the only one which passed all tests was that in the distant past, indeed, the magnetic polarity of the Earth was sometimes reversed.

Please Note: This web site regularly receives questions about reversals. Do they pose a danger to life on Earth? Is one due soon? How quickly do they take place? Click here to bring up four of those questions, with their answers.


Ocean Floor Magnetization

  Mid-Atlantic Ridge
In the 1950s electronic magnetometers were developed. Unlike the older instruments, based on the compass needle, these could be towed behind an airplane or a ship. Oil companies were soon using them aboard airplanes, mapping the weak magnetism of rocks to help locate oil deposits. On land, the patterns of this magnetism seemed jumbled, with no meaningful order.

Extending those measurements to the oceans, around 1960, revealed a surprising difference. In the ocean floor the magnetization was orderly, arranged in long strips. The strips on the Atlantic ocean floor, in particular, all seemed parallel to the "mid-Atlantic ridge." That is a volcanic ridge running roughly north-to-south (with some zigs and zags), halfway between Europe-Africa and America. It is marked by the focus-points of earthquakes and by some volcanic islands, and more recently it was explored by research submarines, which have at times observed lava oozing out at its crest.

                  Ocean floor magnetization     (USGS figure)

Not only were the magnetic strips lined-up with the central ridge, but their structure and distribution seemed remarkably symmetric on both sides: if (say) a narrow-wide pair of strips was observed at a certain distance east of the ridge, its mirror image was also found at about the same distance to the west.

Sea-Floor Spreading

This puzzling picture was explained in 1962 by Lawrence Morley (whose article was rejected by the journals as too speculative) and by Drummond Matthews and Fred Vine. They all proposed that the sea floor was in constant motion, pulling away from the central ridge at a rate of about one inch (2.5 cm) per year.

As the "plates" on each side are pulled away, lava emerges from the middle, solidifies and "records" the prevailing magnetic field. The newly formed basalt sticks to the plates and is also pulled away--some of it towards Europe and Africa, some towards America. Every half million years, on the average, the Earth's magnetic polarity reverses, and so does the magnetization of the ocean floor. Each strip therefore represents an epoch of one or the other magnetic polarity, and the symmetry is also explained. It is as if the sea-floor was a giant tape recorder, with twin tapes emerging from the mid-Atlantic ridge, recording the Earth's magnetism at the time they emerge and then traveling in opposite directions. Similar magnetic strips were also observed in all other oceans.

      Sea-floor spreading     (USGS figure)

If the sea-floor was moving, then continents adjoining them might share that motion, just as Wegener had guessed. The main difference now seems to be that rather than pushing their way through a semi-fluid on which they float, the continents (or some of them) ride on top of "conveyer belts" in that fluid. These are the "plates" which emerge at mid-ocean and go down again (at least in some cases) at the deep oceanic trenches, like the ones found near Japan or in the Caribbean Sea.

The science of the shaping of the Earth's crust goes by the name "tectonics," and the process described here is the essence of "plate tectonics" by the Earth's crust consists of distinct plates which are continually rearranged, sometimes carrying along continents or parts of continents. The entire motion is indeed driven by the Earth's internal heat.

The Pacific plate bordering California, for instance, is slowly rotating, moving northwards. The edge of California is attached to that plate and also moves northwards, but the bulk of the continent does not. The juncture between the two, where one slips by the other, follows in part the famous San Andreas fault.


Further Reading

In 1996 the US Geological Survey (USGS) published a book "This Dynamic Earth" by W. Jacquelyne Kious and Robert I Tilling. This book, in its entirety, is on the web, and can be accessed here. In clear language with many illustrations (including the ones shown above), it tells the story of plate tectonics much more completely than could be done here. One of its many interesting sections describes the life and work of Alfred L. Wegener.


################################



The Magnetosphere


What are those "magnetic storms" which occasionally disturb the Earth's magnetic field? Unlike changes of the internal field, they happen quickly, over hours or days--and magnetic variations from the polar aurora ("northern lights") are even faster. Whatever causes them is outside the Earth, not in the core. But what?

Birkeland's Terrella

Magnetic storms and the sunspot cycle seem subtly connected. Large storms appear more frequently (though not only) during years of high sunspot activity, and such storms also cause auroras at unusual locations, much further from the magnetic poles--even in the middle of Europe and of the United States.

      Birkeland's terrella
Kristian Birkeland, a Norwegian physicist, took in 1895 a hint from William Gilbert and placed a terrella--a magnetized sphere representing the Earth--in a vacuum chamber made of glass. He then aimed a beam of electrons at the terrella (somewhat like the beam of electrons in a TV picture tube) and observed their path by means of the glow they produced in the residual air left in the chamber. The glow followed magnetic field lines (lines of force) and converged near the magnetic poles of the terrella.

Was this a clue why the polar aurora is usually seen only within a limited distance of the magnetic poles?

It indeed was. The French mathematician Henri Poincaré--and 50 years later, in more detail, Hannes Alfvén in Sweden--analyzed the motion of such electrons and concluded that they were guided by magnetic field lines, like beads strung on a wire. From his terrella experiment, Birkeland guessed that the aurora was caused by electrons from the Sun, which were guided by magnetic field lines to the Earth"s polar caps, and produced there a glow as they hit in the upper atmosphere. As it turned out, the Sun was not the source, but the rest of the guess was pretty close to the truth.

The Ring Current

But what about the changes in the Earth's magnetism during a magnetic storm? At such times the magnetic field observed near the equator, anywhere around the Earth, became weaker by about 0.5-1%. This suggested that somehow, during storms, a large electric current circled the Earth above its equator. Scientists named it the "ring current," but no one had an idea at what distance it flowed.

Alfvén's theory suggested how this current could be carried. Charged particles, such as ions or electrons, were not only guided by magnetic field lines, but as they slid along such lines (more accurately, spiralled around them), they were also repelled (in a way) from regions of more intense magnetic field.

      Motion of a Trapped Particle
Field lines of the Earth, like those of a bar magnet, stretch from the vicinity of one magnetic pole to that of the other, and the magnetic force on each line is weakest halfway between the line's "footpoints" on Earth, in the part where the line is most distant from Earth. Ions and electrons can be trapped in that weak field, bouncing back and forth, turned back each time they try to slide down into the more intense field which exists closer to Earth.

One can show that by secondary processes, such particles also slowly change their attachment from one field line to its next neighbor, gradually circling the globe--clockwise (view from far north) for positive ions, counterclockwise for negative electrons. However, any time negative electrons move one way and positive ions the opposite way, an electric current is created! That was indeed how S.F. Singer in 1957 proposed to explain the existence of a ring current during magnetic storms.

Radiation Belts

In 1958 artificial satellites observed such trapped "radiation belts, " not just temporary belts accompanying magnetic storms, but permanent features of the Earth's magnetic environment in space. In 1959 that environment was named "magnetosphere" by Tom Gold of Cornell University. Two types of belts were found. An inner, small but intense proton belt turned out to be a secondary product of the cosmic radiation, of the diffuse background of high-energy particles which seems to fill our galaxy. But it was the "outer belt" that carried the ring current, a belt of ions and electrons with moderate energy but in large numbers.

      Regions of the Magnetosphere
The energy source of the ring current and of all its associated phenomena turned out to be the solar wind--a continuous flow of ions and electrons, spreading out in all directions from the Sun's topmost layer, the million-degree hot corona. Magnetic storms arise from unusually fast flows in the solar wind, especially those connected to explosive events associated with active sunspots. The solar wind compresses the magnetic field lines facing it on the day side of the Earth and confines those lines into a rounded cavity. In the opposite direction, on the night side, the same solar wind stretches field lines into a long "magnetotail" and the cavity then becomes a long cylinder.

It is this tail where many active phenomena of the magnetosphere--part of our "space weather"--originate. Of special interest is a thick layer known as the plasma sheet, spread in the region of weak magnetic field which is sandwiched between two bundles of magnetic field lines. One bundle, north of the equator, consists of field lines that head into the vicinity of the north magnetic pole, and the other bundle is its mirror image south of the equator, of field lines directed out of the southern polar cap. The plasma sheet is where ring current particles originate, and where "substorms" shove particles earthward and create bright auroral displays.

The Polar Aurora

In locations such as Fairbanks, Alaska or Tromsö, Norway, the polar aurora is not at all rare. Its bright visible arcs appear to be associated with strong electric currents linking Earth to space. Unlike the ring current, such currents are driven by voltage difference (like currents in the home or in a flashlight).

In space such currents most easily flow along magnetic field lines, because the particles that carry them (mainly electrons) tend to stay attached to such lines. Some flow from space to Earth, some from Earth to space, and near Earth their circuit is completed by a layer in the high atmosphere that conducts electricity well, the E-layer of the Earth"s ionosphere, located some 125 km above ground. The currents do not reach the ground, because air at lower levels is a very good electric insulator.

     Solar Wind
      Dynamo

    Electric currents, of course, need to flow in a closed circuit, but we are still not sure where or how these circuits close. For some such currents, a popular guess (probably an oversimplification) is that the distant ends of field lines that carry them dip into the solar wind (which can conduct electricity), somewhat like the wires which Faraday dipped into the water below Waterloo bridge (see section on dynamos). This would create a dynamo drawing its energy from the flow of the solar wind.

    The polar aurora is created by electrons moving earthward while carrying this current. They gain speed from the driving voltage and after reaching the atmosphere, smash into atoms of oxygen or nitrogen, causing them to emit light. The typical aurora has an eerie greenish glow, emitted by oxygen.

Be aware that all the preceding is a very simplified picture, omitting many details. Unfortunately, a fuller description of the Earth's magnetosphere and its interesting phenomena is entirely beyond the scope of this brief presentation. Much more information can be found in "
The Exploration of the Earth's Magnetosphere,"an extensive and thorough (but non-mathematical) exposition.


################################



Planetary Magnetism


Until the middle of the 20th century the Earth's magnetism seemed to be a happy accident of nature. Too many factors had to fit just right--the fluid core of the Earth, its electrical condctivity and its motions, all had to satisfy the strict requirements of dynamo theory.

That was before other planets in the solar system were visited and examined. Now we know that among those planets, only Venus lacks any magnetism. The planets differ greatly in size and properties, and their fields differ too. Yet they all seem to have dynamo fields, or (in the case of Mars and the Moon) have had them in the past.

Jupiter

  Jupiter
(bigger version)
In early 1955, two young radio-astronomers started working with a cross-shaped antenna array of the Carnegie Institution's Department of Terrestrial Magnetism (DTM). The array could select signals from a narrow range of directions, and Ken Franklin and Bernie Burke calibrated it using a known source, the Crab Nebula, then began surveying the surrounding sky.

They found another conspicuous radio source, but unlike the Crab, its position slowly shifted. Could it be Jupiter? Standing next to the array at night, Bernie noted a star overhead and asked Ken "what is that bright thing up there?" It was Jupiter, and that's where the signal came from. In publishing their result, the astronomers speculated "the cause of this radiation is not known but is likely to be due to electrical disturbances in Jupiter's atmosphere."

In 1959, after the Earth's radiation belt had been discovered, Frank Drake observed Jupiter and concluded from the relative intensities in a range of wavelengths that the signal was probably emitted by electrons trapped in a strong magnetic field. Then in 1973 the space probe Pioneer 10 passed by Jupiter and found there, sure enough, an enormous planetary magnetic field and a very intense radiation belt.

If the fields of Earth and Jupiter were both approximately represented by bar magnets at the planet's center, then Jupiter's magnet would be about 20,000 times stronger. Jupiter's magnetic axis, like the Earth, is slightly offset from the rotation axis, but while Jupiter and Earth (and other planets) spin in the same sense, the magnetic polarity of Jupiter is the opposite of Earth's.

What produces that field is still unclear. No one knows what Jupiter's core consists of, but by one widely held theory, it is hydrogen, compressed by the huge weight of the planet's outer layers to the point at which it becomes a metal and conducts electricity. The strange radio signals observed by Franklin and Burke came from Jupiter's radiation belt, the most intense one in the solar system--so intense that after just one pass through it, Pioneer 10 suffered some (minor) radiation damage. Along with its radiation belt, Jupiter also has auroras, observed from Earth by the orbiting Hubble telescope.

  Jupiter   auroras
  (bigger version)
Jupiter's magnetic field produces some interesting interactions with the planet's larger moons (which are bigger than ours). Io, the innermost large moon, is heated by its tides, a bizzare world with active sulphur volcanoes and a thin atmosphere. Its ionosphere and/or body conduct electricity, and the relative motion between Io and Jupiter's magnetosphere creates a dynamo circuit, which produces large currents flowing between them.

The space probe Voyager 1 passed close to those currents on March 5, 1979, and observed their magnetic fields. Those fields also affect Jupiter's radio emissions and cause the "signal" which they beam to Earth to rise and fall, depending on the position of Io. More recent observations by the Galileo space probe also suggest that the moon Ganymede has its own magnetic field. Jupiter's magnetosphere at these distances rotates with the planet, and as it moves past Ganymede, that moon apparently carves out it it its own small magnetosphere.

Other Planets

All four giant planets--Jupiter, Saturn, Uranus and Neptune--were visited by Voyager 2. (The first two were also visited by Pioneer 10 and 11 and by Voyager 1, and the probe Ulysses flew by Jupiter, while the probe Galileo is currently in orbit around it.) All four have magnetic fields much stronger than the Earth's, in the sense defined above for Jupiter. Saturn's magnetic axis, remarkably, seems to be exactly lined up with its rotation axis, within the accuracy of observations.

The magnetic axes of Uranus and Neptune, on the other hand, are inclined by about 60° to their rotation axes. The shape and properties of a planetary magnetosphere depends on the angle between the flow of the solar wind (i.e. the direction from the Sun) and the magnetic axis, and for those two planets, that angle is rapidly changing all the time. As a result, their magnetospheres undergo wild variations during each rotation, although both manage to contain trapped particles. The origin of all those field is unknown: Saturn is big enough to produce metallic hydrogen in its core, but Uranus and Neptune are not.

The planet Venus was visited by Mariner 10 in 1974, which continued from there to Mercury. Venus was found to be unmagnetized: the solar wind is only stopped by its upper atmosphere, the ionosphere, creating a completely different type of magnetosphere, more like a comet's tail. On the other hand, tiny Mercury--an airless rock only moderately bigger than our Moon, rotating very slowly--surprised observers by being magnetized. Its magnetic field is weak and probably does not extend far enough to trap many particles, but as the spacecraft passed through its nightside tail, it observed a sudden spasm in which particles were apparently energized. To learn more about all this, NASA has scheduled the "Messenger" mission to fly to Mercury and orbit it.

Mars and the Moon have permanently magnetized patches of rock on their surfaces, suggesting that even if they now lack a dynamo field, at some time in the past they possessed one. That would agree with the giant volcanoes (apparently extinct) observed on Mars, which suggest a hot interior.


  Magnetization of Mars: red in one direction,
      blue in the opposite one
  For more details, see
      Astronomy Picture of the Day, 4 May 1999
    The magnetized patches on that planet, first observed by the Mars Global Surveyor, are particularly intriguing because they seem to form strips, reminding researchers of the magnetized strips observed on the sea bottom on Earth, from which the idea of plate tectonics emerged. Magnetic observations on Mars, however, are not yet detailed enough to allow any firm conclusions to be drawn.

Planetary magnetic fields thus seem to be the rule, not the exception, at least in our solar system. About a thousand years have passed since the discovery of the magnetic compass gave the first hint of such fields. As their study enters its second millenium, it faces more unanswered questions than ever before.


################################


Glossary


    Caution please: Links marked * will take you out of this directory, into the rest of the world-wide web. They will not work if you use this glossary off an internal directory.
            (2) The items linked to extensive descriptions when listed as glossary headings may only be linked to shorter ones when mentioned inside a glossary entry.


Click on the item whose definition you want


Acceleration Alpha processes Amplification
Anti-dynamo theorem Auroral oval Auroral zone
Aurora, polar Basalt Chromosphere
Coition Continent Continental drift
Core (Earth's) Corona Coronal hole
Coronal mass ejection Coronal streamers Crust (of Earth)
Declination (magnetic) Dip angle Dipole
Dynamo Dynamo process Dynamo theory
Dynamo, fluid Electric charge Electric current
Electricity Electron Ferromagnetic
Field Field, Electric Field, electromagnetic
Field line, closed Field line, open Field line preservation
Field lines, magnetic Field, magnetic Flare, solar
Flux, magnetic Hard materials (magnetic) Inclination (magnetic)
Inner core Inverse squares law Ion
Kinematic dynamo Lava (magma) Lightning
Line of force Lithospheric plates Lobe, tail
Lodestone Magnetic Bode's Law Magnetic induction
Magnetic pole Magnetic potential Magnetic storm
Magnetization, induced Magnetize Magnetometer
Magnetometer,
    fluxgate
Magnetometer,
    proton precession
Magnetometer,
    Overhauser effect
Magnetometer, alkali vapor Magnetopause Magnetosphere
Magnetotail Main field Maunder minimum
MHD MHD dynamo theory Mid-ocean ridge
North-seeking pole Orb of virtue Photosphere
Plasma Plasma sheet Plate tectonics
Polar wandering Poloidal field Radiation belt
Radiation Belts (inner, outer) Reconnection, magnetic Reversals, magnetic
Ring current Seafloor spreading Secular variation
Soft materials (magnetic) Solar activity Solar cycle
Solar flare Solar wind South seeking pole
Spherical harmonics Substorm, magnetic Sunspot
Sunspot cycle Terrella Toroidal field
Torsion balance Trapping Trenches, oceanic
Variation Versorium Verticity

Acceleration In mechanics (e.g. in the *description of free fall or in *Newton's laws, acceleration is a change in the velocity of a moving object. In studies of magnetospheres, of the Sun and in astrophysics, "acceleration" often implies the energization of ions or electrons, imparting great velocities to (for instance) electrons of the polar aurora or ions of the radiation belts.

Alpha processes In dynamo theory, a class of fluid flows which make possible feedback from toroidal modes of the magnetic field to its poloidal modes.

Amplification (of a magnetic field) The process by which fluid motions in a conducting fluid can make a weak magnetic field become stronger. On the Sun, stretching of the field lines of a magnetic field, coupled with field line preservation, will amplify the field.

Anti-dynamo theorem, an informal name for Cowling's theorem, by which a self-sustaining kinematic dynamo cannot have axial symmetry.

*Auroral oval, the region in which aurora is observed at any given time, typically a circular band centered about 3 degrees nightward of the magnetic pole. With a typical radius of 2500 kilometers, it expands during magnetic storms and contracts during "magnetically quiet" times.

*Auroral zone The region in which aurora is likely to be seen, on the average. A band centered on the magnetic pole with a radius of about 3000 km, the auroral zone is defined by collected auroral observations over many years. It is the average of many auroral ovals of different sizes.

*Aurora, polar (also known north of the equator as northern lights or aurora borealis ["northern dawn"], and south of it as aurora australis) A glow seen in the sky, usually in the auroral zone, caused by electrons hitting atmospheric atoms and causing them to emit light. The typical aurora is produced at altitudes around 100 km (60 miles), by electrons of 3-15,000 *electron volts. Most aurora is greenish, caused by light emitted from oxygen, or red, also from oxygen. Electrons producing auroral arcs seen from the ground have usually undergone acceleration in the magnetosphere by electric currents that connect Earth to space. Electrons observed by satellite imagers, often as rings around the auroral oval, are usually escaping from the Earth's magnetotail. Their glow is too dim to be seen by eye from the ground.

Basalt A black rock, formed when a common type of volcanic lava cools and hardens. Basalt is faintly magnetized, in the direction of the magnetic field existing when if first cools.

* Chromosphere The layer in the Sun's atmosphere just above the light-emitting photosphere. About 5000 km high, it is visible to the unaided eye as a reddish layer (chromo- means color-) during a total eclipse. On the face of the Sun its light is completely swamped by that of the photosphere, but it can be observed through filters that isolate narrow color bands (spectral "lines") emitted by specific elements. The chromosphere is of interest because flares and other active solar phenomena occur in it and because it is the transition to the hotter solar corona

Coition Term invented by William Gilbert, obsolete today, to describe the attraction between magnets. Gilbert wanted to stress the mutual symmetry of the attracting force, not realizing that (by Newton's 3rd law) any attraction is mutually symmetric.

Continent A large land-mass on Earth, formed by slabs of granite floating on the denser, deeper layers of the lithospheric plates.

Continental drift The name given by Alfred Wegener to his 1915 theory, by which continents not only floated on top of deeper layers, but were able to slowly move ("drift") the way ice-floes do in the arctic ocean.

Core (of Earth) The dense spherical region surrounding the center of the Earth. By studying the propagation of earthquake waves, geophysicists concluded that the core was fluid, and from its estimated density proposed that it consisted of molten iron. Later studies showed that inside the fluid core was a smaller solid "inner core. " A fluid core, generating heat and able to conduct electricity, is one of the necessities of the dynamo theory of the Earth's magnetic field.

* Corona The outermost layer of the Sun's atmosphere, starting about 5000 km above the photosphere, its outermost layers merging with the solar wind. The corona is extremely hot, as originally evidenced by the light of atoms from which many electrons have been torn (e.g. iron missing 13 electrons), suggesting they were buffeted in a gas of 1 million deg. centigrade or more. The source of this heat is still being debated. Because of the high temperature, the corona can be observed from space in x-rays and extreme ultraviolet, showing many features. From the ground the full corona is only seen (for a few minutes) during a total eclipse of the Sun, though the inner corona can also be observed through appropriate color filters.

*Coronal hole--an area in the Sun's corona that appears dark when viewed in the far UV or in the long-wavelength end of the x-ray range. Coronal holes seem associated with sources of fast solar wind, probably because their field lines do not curve back to the Sun. Over most of the Sun their shapes are changeable and irregular, but the Sun's polar regions seem to contain "permanent" coronal holes.

*Coronal mass ejection (CME)--a huge cloud of hot plasma, occasionally expelled from the Sun. It may accelerate ions and electrons and may travel through interplanetary space as far as the Earth's orbit and beyond it, often preceded by a shock front. When the shock reaches Earth, a magnetic storm may result.

Coronal streamers Long streaks seen in the solar corona during total eclipses, or in photographs from space which achieve similar effects. They are believed to outline magnetic field lines of the Sun.

Crust (of Earth) The outermost layer of rock the Earth, relatively thin (about 30 km).

Declination (magnetic) The difference between magnetic north, given by the compass needle, and true north, the horizontal projection of the direction of the Earth axis.

Dip angle The local angle between the horizontal and the direction of the magnetic force. Indicated by a freely-floating magnetic needle, free to turn to any direction in space, or by a "dip circle" instrument, which has a needle pivoted around a horizontal axis aligned in the magnetic east-west direction.

Dipole--a compact source of magnetic force, with two magnetic poles. A bar magnet, coil or current loop, if their size is small, create a dipole field. The Earth's field, as a crude approximation, also resembles that of a dipole, located near the Earth's center.

Dynamo Also known as "generator," a machine creating electric currents by relative motions between the conductors that carry them and magnets of electromagnets. In geomagnetism the term is also used for naturally occurring fluid flows through a magnetic field, generating electric currents. A self-excited dynamo (of either kind) is one in which the generated current creates the magnetic field by which the dynamo operates.

Dynamo process The generation of magnetic field by motions of a fluid that conducts electricity, motions driven by some source of energy (e.g. heat convection).

Dynamo theory The theory of fluid dynamos. Initially, "kinematic dynamo theory" asked whether dynamo processes were at all possible, and after some decades of study, the answer was "yes." "MHD (magneto-hydrodynamic) dynamo theory" searches for dynamos which also satisfy consistent pressure and force structures.

Dynamo, fluid A dynamo process occuring in a fluid that conducts electricity.

Electric charge--A property of electrons and ions, causing them to attract each other, and to repel particles of the same kind. The electric charge of electrons is called "negative" (-) and that of ions "positive" (+). Materials such as glass, fur and cloth acquire an electric charge by rubbing against each other, a process which tears electrons off one substance and attaches it to the other. Electric charges (+) and (-) may also be separated by a chemical process, as in an electric battery. About Ben Franklin's role in studying and naming electrical charges, *see here.

Electric current--a continuous flow of electric charge through a material which conducts electricity, carried by ions and/or electrons. Currents usually flow in a closed circuit, without beginning or end. In daily life a current is generally driven through wires by a voltage ("electric pressure") produced by batteries or generators. Some currents in space plasmas are also produced this way, but many are inherent to the way ions and electrons move through magnetic fields, e.g. their drifts.

Electricity --Colloquially, electric charge and currents, viewed as a "fluid" which may be attached to matter or flow through it. The word came from "elektron," the Greek name of amber, one of the materials which when dry and lightly rubbed can attract small objects (by "static electricity"). The Greeks and Romans already knew about such attractions, but William Gilbert, who studied them, called such materials "electricks," and from that came the modern term.

*Electron--a lightweight particle, carrying a negative electric charge and found in all atoms. Electrons can be energized or even torn from atoms by light and by collisions, and they are responsible for many electric phenomena in solid matter and in plasmas. (About the discovery of the electron in 1897, click here.)

Ferromagnetic --A material which like iron ("ferrum" in Latin) can become strongly magnetized, temporarily or permanently. William Gilbert named such materials "magneticks."

*Field --The region in which a particular type of force can be observed; depending on the force, one can thus speak of a gravity field, magnetic field, electric field (or when the two are linked by fast oscillations, electromagnetic field) and nuclear field. The laws of physics suggest that fields represent more than a possibility of force being observed, and that they can also transmit energy and momentum, e.g. a light wave is a phenomenon completely defined by fields. For that reason a field is often viewed as a space which was modified by the sources of the force which the field represents.

Field, electric--the region in which electric forces can be observed, e.g. near an electric charge.(see field).

Field, electromagnetic(EM field)--the regions of space near electric currents, magnets, broadcasting antennas etc., regions in which electric and magnetic forces may act (see field). Unchanging magnetic or electric phenomena can often be handled by just considering the magnetic or the electric field alone; however wave phenomena such as radio and light involve a tight interplay of time-varying electric and magnetic fields, viewed as manifestations of their *electromagnetic fields.

Field line, closed In magnetospheric physics, field lines which are not open, but have both ends attached to Earth. The field lines reaching most locations on Earth are closed and can trap charged particles.

Field line, open --In magnetospheric physics, a field line whose one end reaches Earth (specifically, the conducting ionosphere layer in the high atmosphere) but whose other end extends into the solar wind. Presumably, such lines have undergone magnetic reconnection. Because plasma and energy easily flow along magnetic field lines, these lines offer an easy pathway by which energy and plasma can flow from the solar wind to the Earth's magnetosphere.

*Field line preservation--A predicted property of fluids which are perfect conductors of electricity (including "ideal plasmas"), fairly closely obeyed in much of the space environment. By this property, two particles which initially share the same field line, continue to do so into the future, even if the line is deformed. The opposite also holds for such fluids: two particles which start out on different field lines will always be on different field lines (but see magnetic reconnection).

*Field lines, magnetic--imaginary lines in space used for visually representing magnetic fields (just as lines of latitude and longitude are used to represent locations on Earth). At any point in space, the local field line points in the direction an ideal compass needle would assume, if it were free to rotate in 3 dimensions. It is also the direction of the magnetic force--the force which an isolated magnetic pole at that point would experience. In a plasma, magnetic field lines guide the motion of ions and electrons, are sometimes able to trap them and direct the flow of some electric currents.

Field, magnetic The region where magnetic forces can be observed. See field.

* Flare, solar (Solar flare)--a rapid outburst on the Sun, usually in the vicinity of an active sunspot. A sudden brightening (only rarely seen without special filters, e.g. ones that isolate the red light of hydrogen) may be followed by the signatures of particle acceleration to high energies--x-rays, radio noise and occasionally, a bit later, the arrival at Earth of high-energy ions from the Sun. Flares appear to be associated with rapid energy releases high above the photosphere, apparently from the magnetic fields of sunspots. Their link to coronal mass ejections, which may also be powered by magnetic energy, is still unclear.

Flux, magnetic A measure of the amount of magnetic energy contained in a bundle of magnetic field lines. The magnetic flux in the bundle is found by multiplying its perpendicular cross section area by the average magnetic intensity on that cross section.

Hard materials (magnetically) Materials which can retain permanent magnetization.

Inclination (magnetic) The scientific name to the magnetic dip angle.

Inner core (of the Earth) While the Earth has a spherical fluid core, the inner core is a solid sphere in the middle of the fluid core, about 3/4 its width. It may have formed by the solidification of the liquid iron of the fluid core, and since such solidification releases heat, this may be one source of energy for the fluid motions which sustain the Earth's inner dynamo.

Inverse squares law The mathematical formula by which a force decreases with distance from its source like the inverse of the square of the distance R from the source, that is like 1/R2. Gravity decreases at this rate, also the electric force due to an isolated electric charge and the magnetic force due to an isolated magnetic pole. Here a "source" is assumed to be pointlike and small, but it may be shown that a sphere with even distribution of source material also acts like a point source at its center.

*Ion--usually, an atom from which one or more electrons have been torn off, leaving a positively charged particle. Ions carry much of the large-scale currents in the Earth's magnetosphere. "Negative ions" are atoms which have acquired one or more extra electrons, and molecules can also become such ions.

Kinematic dynamo --In the theory of fluid dynamos, a self-sustaining dynamo process based on a certain flow pattern, without requiring the flow pattern to be consistent with force balance and other physical considerations.

Lava (magma) --Molten rock issuing from a volcano or volcanic vent.

Lightning --A discharge of static electricity, generated (usually) by a thunderstorm cloud.

Line of force --Michael Faraday's original term for what is now known as magnetic field line.

Lithospheric plates --Large plates of dense rock, supporting the continents and oceans. The entire surface of the Earth is divided among them, and their relative motion is the basic driver of plate tectonics.

Lobe, tail --One of two bundles of magnetic field lines, starting at the Earth's polar caps and stretching into the magnetotail--one linked to the region around the northern magnetic pole, the other to that around the southern one. The tail lobes contain very rarefied plasma and appears to store magnetic energy released in substorms .

Lodestone (also spelled Loadstone) --A rare mineral, found to have strong permanent magnetization. For many centuries, lodestones provided humanity with its only known source of magnetism. The mineral is a rare form of fine-grained magnetite and is believed to acquire its magnetic properties when struck by lightning.

Magnetic Bode's law --Bode's law is an approximate formula giving the distances of planets from the Sun; it fits observations, but has no theory behind it. "Magnetic Bode's Law" suggested a similar regular dependence of the strength of a planet's magnetic source on the size of the planet. Some regularity exists--the largest and second largest planets (Jupiter and Saturn) have the largest and second largest magnetic sources. However, Venus, only slightly smaller than Earth, is not magnetized, while Mercury, much smaller, is; thus this guess is unconfirmed.

Magnetic induction --This term may refer to one of two phenomena, either induced magnetism or electromagnetic induction. The latter may be loosely defined as the ability of a substance that conducts electricity to develop a circulating current, if it senses a changing magnetic field. The change might come either from of variation of the strength of the magnetic source, or from the motion of the conductor relative to that source. The dynamo process is based on such currents.

Magnetic pole-- (1)A magnetic pole of a bar magnet is a compact source of magnetic force near the end of the bar. Magnetic poles always come in matched pairs, north-seeking (N) and south-seeking (S). Magnetic poles are just an observed consequence of the way magnetic field lines are channeled by the bar: actually, the bar's magnetization is evenly spread inside it and is not concentrated at its ends.
    (2) The magnetic pole of Earth is one of the two points on Earth towards which the compass needle seems to point. At the pole, the magnetic force is vertical. The magnetic poles of Earth are near the geographic poles, the points where the Earth's surface intersects its rotation axis; however the two are not the same, and on Uranus and Neptune are quite widely separated.

Magnetic (scalar) potential --The magnetic force at a point in space is a *"vector" quantity, one which has both direction and strength. To specify it, three numbers are required--for instance, one specifying its strength and two its direction. However, the magnetic field near the surface of the Earth (and at any other location where electric currents are absent) is of a relatively simple kind, describable by a single varying quantity--an ordinary number or "scalar", as distinct from a vector. A similar simplified representation exists for the force of gravity, even when its sources are complicated.
        The magnetic scalar potential was introduced for describing the Earth's magnetic field by Gauss and is described in terms of "spherical harmonics." It is still being used.

*Magnetic storm--A large-scale disturbance of the magnetosphere, often initiated by the interplanetary shock marking the arrival of a plasma cloud originating at the Sun.
     A magnetic storm is marked by the injection of an appreciable number of ions from the tail regions of the magnetosphere into the near-Earth magnetosphere, increasing the ring current. The stronger ring current shifts the region of the polar aurora equatorward, so such storms offer a rare opportunity to residents in middle latitudes to see auroral displays. The injected particles cause a world-wide drop in the equatorial magnetic field, taking perhaps 12 hours to reach its greatest intensity, followed by a more gradual recovery.

Magnetization, induced The magnetization of iron and similar "ferromagnetic" materials, when placed near a magnet or lodestone. In magnetically "soft" materials this magnetization is only temporary.

Magnetize --Cause to become magnetic. This can happen by placing the material in the strong magnetic field produced by a permanent magnet or by an electric current, or when heated material which can become magnetic (e.g. iron or basaltic lava) cools down in the presence of a magnetic field.

Magnetometer--an instrument for measuring the direction and/or intensity of magnetic fields. Spacecraft often carry fluxgate magnetometers, which measure components of the magnetic field (3 of them are combined to provide all three, giving both strength and direction of the field) but they need to be calibrated.
    Instruments using rubidium vapor measure only the field strength, but their reading is absolute, related to atomic constants.

Magnetometer, Fluxgate-- An electronic magnetometer based on the saturation of certain magnetizable materials. Can be made very sensitive.

*Magnetometer, proton precession --An electronic magnetometer based on the resonance between protons (hydrogen nuclei) and an oscillating electromagnetic signal. Protons are small magnets, and the magnetic strength of each (like the proton's mass) always has the same value, which is well known. Because of this, the resonance frequency has a simple relation to the strength of the magnetic field. By measuring that frequency, the magnetic field strength can be immediately calculated, and no calibration of the instrument is needed.

Magnetometer, Overhauser effect --A greatly improved version of the proton precession magnetometer (preceding item), using an added chemical to enhance performance.

Magnetometer, alkali vapor--A magnetometer which, like the proton precession type, is based on an atomic resonance process and therefore requires no calibration. A glass chamber containing the vapor of an alkali metal (e.g. rubidium or caesium) becomes slightly more opaque to a specific light frequency when exposed to a radio signal of resonant frequency. That frequency gives the strength of the surrounding magnetic field.

Magnetopause--The boundary of the magnetosphere, separating plasma attached to Earth from that of the flowing solar wind.

Magnetosphere -- The outermost environment of Earth, dominated by the Earth's magnetic field. The magnetosphere is a cavity carved in the solar wind by the planetary magnetic field, and is the site of the radiation belts and of many intricate phenomena. Magnetized planets other than Earth also have magnetospheres.

Magnetotail--The long stretched-out nightside region of the magnetosphere, the region in which substorms begin. It starts about 8 Earth radii (RE) nightward of the Earth and has been observed to distances of at least 220 RE. See plasma sheet, tail lobes,

Main field (of Earth)--A term frequently used by scientists for the internal magnetic field of the Earth, in distinction from fields originating outside its surface.

Maunder minimum--A period between 1646 and 1715 in which (for unknown reasons) sunspots grew scarce and astronomers lost interest in them. First noted by E. Maunder around 1900, the Maunder minimum may have been associated with a colder climate observed in those years, at least in Europe.

MHD --Short for "magneto-hydrodynamics, " the theory of fluids which conduct electricity. MHD is applicable to the Earth's fluid core and also to many plasmas.

MHD dynamo theory --The theory of dynamo action in conducting fluids, including force balance and other physical effects.

Mid-ocean ridge The volcanic ridge in the ocean floor between two lithospheric plates, at which lava oozes out and builds up the plates, which are slowly pulled away from it. The Mid-Atlantic Ridge is the best known example.

North seeking pole--The pole of a bar magnet which, if the magnet is freely suspended (or is placed on a "boat" floating on water) tends to point northward. Also known as the "north pole" (or "N pole") of the bar magnet. However, it should be noted that if a bar magnet at the center of the Earth were the source of the Earth's field, the N-pole of that bar would be directed southward, because it tends to repel another N-pole, not attract it.

Orb of virtue (of the Earth). --William Gilbert's term for the region in which the Earth's magnetic attraction can be observed--for what we now might call the Earth's magnetic field. Since "orb" means sphere, in modern terms this would translate to "sphere of influence."

Photosphere--The layer of the Sun's atmosphere from which almost all visible light reaches us. The Sun is too hot to have a solid surface and the photosphere consists of a plasma at about 5500 degrees centigrade.

*Plasma--a gas containing free ions and electrons, and therefore capable of conducting electric currents. A "partially ionized plasma" such as the Earth's ionosphere or the gas inside a fluorescent lamp is one that also contains neutral atoms.

Plasma Sheet --The region in the magnetotail of relatively denser plasma and rather weak magnetic field, stretching tailwards from the Earth's magnetic equator. It separates the two tail lobes and is the site of substorms and the source region of most of the polar aurora.

Plate tectonics. The theory according to which the changes of oceans and continents are dictated by the lithospheric plates being built up at mid-ocean ridges and consumed at oceanic trenches.

Polar wandering A theory popular in the early 1950s but now discredited, which tried to explain the different directions of fossil magnetic fields recorded in ancient basalts. It proposed that the magnetic poles of the Earth did not reverse or change, but that the entire crust of the Earth slowly slid over its interior.

Poloidal field One of two classes of magnetic field (mainly in a near-spherical configurations). A dipole field, and more generally, the internal field of the Earth observed near its surface, is poloidal. (The field in the core, however, may also contain some field of the toroidal mode).

Radiation belt --The region of high-energy particles trapped in the Earth´s magnetic field.

*Radiation belts (inner, outer) High energy particles (loosely, "radiation") trapped by the Earth's magnetic field consist of two populations, of different energies, locations and sources. The inner radiation belt contains energetic protons, typically of energy 10-50 Mev (10-50,000,000 electron volts) and is a secondary product of the *cosmic radiation. When a cosmic ray ion hits an atom on the atmosphere, an assortment of fragments fans out from the collision, and if the ion moved in a direction near the horizontal, some of these fragments may be splashed out to space. Among them may be neutrons, similar to protons but without electrical charge, and therefore moving in straight lines, unaffected by magnetic forces.
        Neutrons decay radioactively with an average lifetime of about 10 minutes, into a proton (which takes most of the energy), an electron and a neutrino. Ten minutes, however, is the average: a few will already decay within a fraction of a second, and in such cases the proton will materialize close to Earth. Since it carries an electric charge, the proton is affected by magnetic fields, and may be trapped by them. Obviously, only a small fraction of cosmic ray ions contribute such a trapped proton. However, orbits crossing the equator 3000-6000 km above ground are very stable, and such protons can accumulate for years, producing a dense radiation belt.

        The outer radiation belt consists of ions and electrons accelerated in the Earth's magnetosphere; its field lines cross the equator between 2 and 5 Earth radii from the center of the Earth.. Some electrons can reach 1-2 MeV and their origin is not yet clear. The ions can reach 1 MeV, but most of them (and of the electrons) are of lower energy. Besides acceleration of particles from the magnetotail, outer belt particles may also be accelerated when *interplanetary shock fronts hit the magnetosphere.

*Reconnection, magnetic--In a plasma, the process by which plasma particles attached to two different field lines can be made to share the same field line (see field line preservation). For instance, following reconnection, solar wind particles on an interplanetary field line, and magnetospheric ones on a field line attached to Earth, may find themselves sharing the same "open" field line, which has one end anchored on Earth and the other extending to distant space.
   Magnetic reconnection can occur when plasma flows through a neutral point or a neutral line, locations at which the intensity of the magnetic field is zero and its direction is not defined. It is an important concept in the theories of energy transfer from the solar wind to the magnetosphere and of energy release in substorms, and requires a non-zero resistivity near the neutral point, or some process with equivalent properties.

Reversals, magnetic --Episodes of changes in the Earth's magnetic field which result in the polarity of the north and south magnetic poles being interchanged. Reversals have occurred in the geological history of the Earth at typical intervals of 500,000 years. The Sun's global magnetic polarity seems to reverse every 11-year sunspot cycle.

Ring current--A very spread-out electric current circling around the Earth, carried by trapped ions (peak energy about 65,000 electron volt) and electrons.

Seafloor spreading --The movement of the ocean floor away from mid-ocean ridges.

Secular variation --The observed slow variation of the magnetic field from sources inside the Earth.

Soft materials (magnetically) --Materials such as soft iron which become temporary magnets when placed near permanent magnets or electric currents, but lose their magnetization when taken away again.

*Solar activity A general term for the class of processes and changes on the Sun that rise and fall with the sunspot cycle, e.g. solar flares.

Solar cycle (or sunspot cycle)--an irregular cycle, averaging about 11 years in length, during which the number of sunspots (and of their associated outbursts) rises and then drops again. Like the sunspots, the cycle is probably magnetic in nature, and the polar magnetic field of the Sun also reverses in each cycle.

Solar flare See flare, solar

Solar wind -- A fast outflow of hot gas in all directions from the upper atmosphere of the Sun ("solar corona"), which is too hot to allow the Sun's gravity to hold on to its gas. Its composition matches that of the Sun's atmosphere (mostly hydrogen) and its typical velocity is 400 km/sec, covering the distance from Sun to Earth in 4-5 days. The solar wind confines the Earth's magnetic field inside a cavity known as the magnetosphere and supplies energy to phenomena in the magnetosphere such as the polar aurora ("northern lights") and magnetic storms.

South seeking pole The magnetic pole (for example, on a bar magnet) which, when freely suspended in space, tends to point south. See north-seeking pole.

Spherical harmonics Mathematical expressions (functions) that depend on location in space, used in expressing the magnetic (scalar) potential. One such expression (in coordinates lined up with the magnetic axis) can describe the dipole component of the field, describing fields whose intensity decreases with distance R like 1/R3. Others can give the 4-pole (quadrupole) component, for fields whose intensity decreases like 1/R4, and still others give more complex parts that decrease even faster. The results of global surveys are usually given as the magnitudes of various spherical harmonics (typically 100 or more, most differing in structure rather that rate of decrease), and the secular variation is usually expressed through the rate at which each of these changes with time.

*Substorm, magnetic--a process by which plasma in the magnetotail becomes rapidly energized, flowing earthward and producing bright auroras and large Birkeland currents, for typical durations of half an hour.

*Sunspot--An intensely magnetic area on the Sun's visible face. For unclear reasons, it is slightly cooler than the surrounding photosphere (perhaps because the magnetic field somehow interferes with the outflow of solar heat in that region) and therefore appears a bit darker. Sunspots tend to be associated with violent solar outbursts of various kinds, and their numbers rise and fall with the solar cycle.

Sunspot cycle See solar cycle.

Terrella--a small magnetized sphere, used as laboratory model of the Earth. The first terrellas are described by William Gilbert in "De Magnete" (1600). About Birkeland's terrella experiments (~1900), *see here

Toroidal field One of two modes of magnetic fields (particularly in spherical configurations), the other being the poloidal field. A typical toroidal field is the one created by a current in a long straight wire, with ring-shaped ("torus shaped") field lines around the wire. A general magnetic field has a toroidal part and a poloidal part. On the Sun, the uneven solar rotation (faster near the equator) amplifies only the toroidal part, though the poloidal field is essential to the process.

Torsion balance --A sensitive instrument invented in 1776 by Charles Augustin Coulomb, measuring small forces by the twist of a flexible thread or wire from which a magnet is suspended. Introduced by Coulomb to observe small variations of the magnetic field, it also allowed Coulomb to to confirm the inverse squares law for magnetic and electric forces.

*Trapping--The process which allows electrically charged particles (such as protons and electrons) to be confined by magnetic fields for long stretches of time. Such particles, if their energy is not too high, tend to spiral around magnetic field lines and be guided by them.
        Trapping is made possible by the fact that the progress of a particle guided along a field line is slowed down or even reversed when the particle is led into regions of stronger magnetic field. Because both ends of a closed field line extend to the surface of the Earth, where the field is stronger than where the line crosses the equator, ions and electrons can be trapped on such lines near the equator. They never reach the atmosphere and become lost there (by collisions with air molecules) because, whenever they approach the ends of the field line, their advance along the field line is slowed down and then reversed.

Trenches, oceanic --The deepest parts of the ocean floor, shaped like long deep valleys. Oceanic trenches mark locations where spreading lithospheric plates descend again into the Earth. They generally parallel shorelines or strings of islands, often ones lined with volcanoes, e.g. Japan, the Aleuts or South America. It is believed the lava of such volcanoes comes from the lighter material in the plates, which separates and floats upwards.

Variation --In William Gilbert's book, the difference (in degrees) between magnetic north and true north. Nowadays known as "magnetic declination." "Variation" was preferred by sailors in Gilbert's time, because "declination" is also used for one of the two angles which define a position in the sky, on the celestial sphere.

Versorium--In William Gilbert's book, a needle on a vertical pivot--either the magnetic needle of a compass, or a non-magnetic lightweight needle designed to indicate the direction of electric attraction.

Verticity--In William Gilbert's book, the ability to acquire magnetic poles (e.g., in an iron bar).




Author and curator: David P. Stern,
audavstern@erols.com
Last updated 3 February 2001