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Introduction

In many countries outside the U.S.A., students are required to do
all their math work on “square-ruled paper”’: paper provided with ruled
squares. It is sometimes called “quadrille paper” (a quadrille long ago
was a square formation in which knights paraded—and, later, a dance
performed in a square formation). :

J
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In countries where such paper is used for calculations, some
teachers seem to believe it helps students by keeping additions and sub-
tractions lined up, without the tens getting into the column meant for the
hundreds, and all that. Actually, of course, one soon finds that there is
much more to math than keeping one’s columns straight—which may be
the reason why some students seem to manage their math problems just
as easily (or with just as much difficulty) on plain paper.

Yet those little squares can do much more than keep columns
straight. They can help make math more interesting and more under-
standable, in many ways. I myself attended school abroad, and I recall
being intrigued and helped by a great number of puzzles, games, and
mathematical “side trips,” all of which used square-ruled paper—or, as it
is more often called in the U.S.A., “graph paper.” This little book is meant
to introduce you to some of them, and I wish you as much fun as I had.




In the chapters that follow you will find a wide variety of subjects
connected in one way or another (sometimes quite loosely, I confess) with
graph paper. All the reader will need beforehand is some basic knowledge
of arithmetic, up to and including operations with fractions, and a rea-
sonably good reading ability.

This book is intended for two rather different groups of readers. On
the one hand, it is meant for advanced students of 7th-to-9th-grade
mathematics—students who find the standard curriculum too limited
and would like some new and more challenging material. Sometimes
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such students are handed material intended for later school years, but

- this merely postpones their problem. Here a different option is offered—

the option of exploring a broader range of subjects, including some areas
rarely discussed in the classroom.

On the other hand, adults seem to enjoy the book as well. Some of

- Iy associates have read it in draft form, and even those among them who

had a background in the technical professions always discovered enter-
taining twists and byways that were not familiar to them. Some adult
readers were attracted by the collection of unusual facts and puzzles, and

many who had moved away from math after leaving school found here
new interest and a fresh viewpoint.

What the book contains is a quick tour showing the mathematical
beginner or amateur what . math really is—not the shuffling of numbers
or the memorizing of formulas, but the development of ideas. You will
read here abojit graphs and formulas, street plans and bridges, furlongs
and barleycorns—and also about Pythagoras and Gauss, and Mark Twain
and Ben Franklin. The aim is to show the many and various forms that a
mathematical idea can have and the many different ways in which math
is related to everyday life and culture. And what you read (and do) may
even increase your appetite—and your ability—to learn more on your
own. .

A few words about the problems and puzzles scattered throughout
the book (signaled by question marks in the margin). The answers are
given in other places (indicated by exclamation marks), but try not to
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peek: work out the solutions by yourself (if you can at all), because this
way you get the satisfaction of discovering things on your own. On the
other hand, you may skip anything that seems too difficult. This is not a
mathematical textbook, and you do not have to master every subject in
order to understand what follows. To get the most out of the book, make
sure you have plenty of graph paper handy, so you can try things out by
yourself while reading.

This is meant to be a fun book—the kind that might be appreciated

on a long trip or a rainy weekend. In writing it, I have tried tq imagine
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that I was telling it to my own children, who seem to have a lot of fun with
math. Technical wording has been avoided as much as possible, and the
mathematics, too, is often simplified. This is all right for a first look at the
subject: if your interest continues, you will probably come back to these
matters, some day, and study them in more detail.

And now, to begin—a puzzle.
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The Prisoner’s Escape

Let us call a “unit” the width of each small square on the ruled
paper (more will be said about that “unit” later on). We now draw a big
square, eight units wide and eight units high, with a small opening at the
top left corner. *

The drawing is the map of a jail: it contains 64 rooms, or ‘“cells”—
€very square is a room—and there exist doors in the walls between
any two neighboring rooms (that is, you can move from one to another
going up, down, left, or right, but not diagonally through a corner). In
addition there is just the one door leading out of the jail: the opening at
the top left corner. ‘

A prisoner sitting in the bottom right corner cell (marked by a dot)
is told that he may leave the jail and go free if on his way out he visits
every other cell once and no more than once (his own cell he may enter as
many times as he wishes). He may open any door to accomplish his pur-
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"i,‘ose, but at the end of his trip he must arrive at the prison’s exit, where
he would be allowed to continue out to his freedom.

How does he move? ‘
, Before you continue, get hold of a sheet of square-ruled paper (or
draw your own rulings) and try to trace the corréct route.

- If you have solved the problem, congratulations! Either you are
unusually sharp—or you have seen it before.

If you haven’t succeeded, you probably found that one cell was -
always left over, as shown below: :

N LM LM
T
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To see why this happens, let us shade the cells in checkerboard
fashion and note the color of each cell visited by the prisoner: '
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The first cell (his own) is white.
The second one is black.

The 3rd one is white.

The 4th one is black.




And so on and so forth: the color always changes, for from a white
cell the prisoner can only enter black cells, and from 2 black cell only
white ones. - '

Therefore, no matter how he moves, all even-numbered cells are
black, all odd-numbered ones are white.

If the prisoner is to end his trip next to the exit gate, the last cell he

S0, somewhere behind him will be left one unvisited black cell.

Yet there is a way, though it Tequires a certain trick. The solution is
given on page 8, but before you look it up, read the problem again—care-
fully—and see if you can discover the trick yourself,




- Rectangles

We now turn to something simpler—to some of the shapes that can
be drawn with the help of square ruling on paper.

Simplest among such shapes are rectangles, and it is easier to
draw one than to desgribe it: :

Rectangles come inall sizes, big and small. One way of measuring
the size of a rectangle is by counting.the number of squares it contains:
we call this the area of the rectangle, and there is a simple rule for
finding it quickly without counting. For example, the rectangle drawn
here is 6 units wide and 4 units high: the rule says that we get the area if
we multiply the width by the'height; so the area must be

6 X 4 = 24 squares.

By the way, whenever areas are measured, one should always state .
the size of the “unit” in which distances are measured. Here the ‘“unit” is
the distance between two neighboring lines of the ruling (its relation to
other units of length will be described in chapter 14). If, on the other
hand, the unit of distance were chosen to be one inch, all areas would be

(13 bhl

~Ixror in Y‘cAtinve inm~thacs




S

00

It is easy to see why the size of the length unit is important. Sup-
pose we had a square ruling with a unit five times smaller than the one
used so far. Then a rectangle of the same size as the one drawn earlier

+HH

this book, the same “unit” will be used eve
will not worry any more about it. , .

In mathematical language, the result of multiplying two numbers
together is called their product. So the rule for finding the area of rect-
angles can be simply stated this way:

4

The area of arectangle is the product
of its width and its height. -

Solution

The prisoner’s escape:

The prisoner may visit his own cell more than once. Until now this
fact has not been used: let’s see whether it provides any help. ,

Suppose that the Prisoner’s first visit is by the “top door” to the cell
Just above his own (in the dravving)_ and suppose that he does wish to
revisit his own cell. He must do so at once: if he does not, then he either
has to enter once more the cell above his own, and this is forbidden, since

he can visit it only once; or he can enter his own cell by the other door, on

left, his escape becomes quite easy. The reason is simple: the prisoner
now makes a total of 65 visits (including two to hig own cell) and the last
cell can be white as required, since 65 ig an odd number.

Try it and see! -
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Can any number be a product? For instance, is 79 the product of
any two whole numbers? Or—in other words—car one draw a rectangle
with an area of 79 without cutting through any squares? A

The answer depends on the rules we follow. It is certainly correct to
write

79 x 1 = 79,

and therefore a rectangle of area 79 can be drawn, provided it is a long
strip one unit wide and 79 units long. However, such products involving
multiplication by 1 can be written for any number; so let us not count
them.

It then turns out that 79 is the product of no two whole numbers.
Numbers with this property are called prime numbers or, for short,
primes. The number 79 is a prime, but its nearest neighbors are not:

78:=6X 13.
80 = 8 x 10.

Prime numbers are scattered among whole numbers like raisins in
a pudding: they become somewhat more rare as one goes to bigger num-
bers, but they never end. The numbers 2, 3, 5, 7, 11, and 13 are prime;
and some more prime numbers, following these, are given in a list on
page 11. Before looking at it, you are invited to make up your own list and
then compare!




Let us examine the squares whose side e
units—and, in particular, find their areas:

A square 1 unit wide has an area 1x1= 1.

qua_}s a whole number of

2 units wide 2 X 2= 4,
3 units wide 3x3= 9
4 units wide 4-x 4 = 16.
5 units wide 5% 5= 95,
4 9 16 25

The next numbers on the list of areas would be

386, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324;

and, of course, the list can be continued without limit.
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This rather interesting group of numbers has a name: they are
called square numbers or simply squares. Squares are always formed by
multiplying a number by itself, and we speak of “the square of a number”
meaning the product of a number with itself. For instance, saying “25 is
the square of 5” means that

5x 5= 25.

There is a short way to indicate that a number is multiislied by itself
one or more times, or that a number is a product of two or more equal
numbers. For example, we often write

52 instead of 5 X 5.
In other words 5?2 is the product of 2 fives. It is sometimes called “five to
the second power”; but usually we call it “the square of five” or “five
squared.” One also writes

53 instead of 5 X 5 X 5,

which is called “five to the third power” or simply “five to the third,” or
sometimes “five cubed.” In the same manner, -

2 means2 X 2 X 2 X 2

and is called “two to the fourth power” or “two to the fourth.” Some other
powers written in this fashion include these: :

% = 4. P = 0
2 = 8. B = 27
2¢ = 16. 3t = 81.
2% = 32. 35 = 243.

Solution

The primes following 13 and smaller than 200:

17 19 93 29 31 37 41 43 47 53

= 61 67 71 73 79 8 8 97 101
03 107 109 113 127 131 137 139 149 151
157 163 167 173 179 181 191 193 197 ‘

d
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The largest prime number known at the time I'm writing equals
— 1. Written in the usual form, this number would be 13,395 digits
long. Of course, the numbers that form the foundation of our everyday
system for naming and writing down numbers—ten, hundred, thousand,
ten thousand (“myriad” in the Bible), and so on through the million and
the billion—are all powers of ten. However, we’d better stop here, since
this is already pretty far from the subject of squares!

244497
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- Formulas

Notice that the squares of numbers grow faster than the numbers
themselves: J

Number: 1 2 3 4 5 6 7 8 -9 10
Its square: 1 4 9 16 25 36 49 64 81 100

While the numbers in the top row grow at a steady rate, getting
larger by 1 at each step, their squares (in the lower row) increase at a rate
that speeds up all the time: the first two squares in our list differ only by
3, but the last two differ by 19! Another sign showing that the squares of
numbers grow faster than the numbers themselves is the fact that when
a number doubles, its square increases not twice but four times: 6 is
twice as large as 3, but 6 = 36 is four times larger than 3* = 9.

Many things are known to grow in this fashion. For instance, if a
car accelerates to twice its speed, it becomes four times harder to stop it.
Let’s take a closer look at what exactly this means.

- Suppose you are driving a car on a level dry road at 40 miles per
hour—that is, a speed which brings you 40 miles farther down the road
for each hour of driving—and suddenly you have to stop. You step on the
brake—but of course the car does not stop immediately: some time is
needed before it slows down and comes to a complete stop. How far will
the car continue moving after you apply the brakes?

The exact answer of course depends on many things—on the car, its
tires, the condition of the road, and so on. However, a fairly accurate

13
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answer can be found by the following rule. Take the number of tens of
miles in your speed (here it is 4), form its square, and multiply everything
by 5: the result is the “braking distance” in feet.

In the particular case of a car moving at 40 miles per hour, this
means ' ' :

42 x 5=16 x 5 = 80 feet.

If instead you were driving at 80 miles per hour, the distance would
be

8 X 5 =64 x 5= 320 feet.

This is quite far: although the car is only moving twice as fast as before, it
now goes four times farther before stopping. Obviously, driving twice as
-fast is more than twice as dangerous!

Mathematicians have a special way of writing down rules of this
sort, by means of formulas. In a formula, any number which is not
known beforehand is marked by a letter. For instance, the rule for the .-
area of a rectangle can be written as a formula thus: ‘ '

] A=WXxH,
where W is the number giving the width,
H is the number giving the height, and
A is the number giving the area.

If you are told that in a particular case W equals 6 and H equals 4, you can
replace the letters in the formula by these numbers and the formula then
gives the correct number for A, namely

A=6x4=24

The rule for the “braking distance” of a car can also be written as a
formula, namely

D =N2 x5,

where N stands for the number of tens of miles-per-hour on the car’s
speedometer and D is the braking distance in feet.

To use the formula, suppose the car travels at 50 miles per hour.
Then N = 5, and by putting the number 5 in place of N in the formula we
get the distance D as ‘

D=5 x 5= 125 feet.
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" As the speed gets higher, the braking distance grows at an increas-

" ing rate, as can be seen from the table below:

Speed.in : .
Miles per Hour D in feet
" 10 . 5
20 ' 20
30 45
40 80
50 : 125
60 . ' 180
‘70 ... 245
80 . nh i m o owx 320 0%

As mentioned before, this formula’is not cémplet'é_ly 'aééi;iate': the
exact braking distance. depends on the roughness of the road, the condi-

" tion of the car’s tires and brakes, and other things. Also, it only applies to
level dry roads: on a wet (or icy) road, or on one that slopes downward,

stopping a car is ‘much harder. On the other hand, the formula will also
work if N is not a whole number—for 95 miles per hour, for instance,
N = 2% and N2 = 6%4. ‘ : : '
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IVVe turn to one ore formula usmg squares. .
: No o6ne has yet found a snnple formula that derives prime numbers’

- ,Mathemaﬂcrans have long searched for one, but the only general method
- fo in i xammatlon of- numbers to see.

‘prlme : .
: Perhaps the nearest thmg to such a formula was discovered by the
. :Swiss-born” mathematlc1an Leonhard Euler (pronounced “oﬂer”) about
' 200yearsago Itls St T F e n P

P=M+N+m

If N is replaced by a small Whole number P is always prime. However

the formula clearly does not hold without a limit: if N = 41, the number

Pis completely' ‘made up’’ by adding and multlplymg the- number 41,and
.‘one would therefore suspect that it can be divided by 41 (indeed 1t/can) In
~fact, even for n = 40 the result can be divided by 41; but if N is a whole

number between (and including) .0 ‘and- 39, Pisa prime number. The

formula thus gives 40 prime numbers one after the other—a record for
."formulas as simple-as this one.* =~ . -

- ‘By-the way, the choice of the letter ‘N to represent the unknown
number in the abqve formula is not an accident. For some reason it has
- become customary in formulas to denote whole nuinbers by: the letter N

(capital or small): if several whole numbers are mvolved the letters pre-
.ceding N in the alphabet are also used, all the way down'to I. In a widely

used system for handling formulas by computers—known as the “com-

puter language” FORTRAN, short for FORmula TRANslatlon——When-

1A
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ever a quantity is denoted by a letter from I to N (or by a group of letters

beginning with a lettér between I and N) the computer automatically
assumes (unless it is instructed otherwise) that the quantity is a whole

numbers which may or may not be whole are usually denoted in formulas

the letter X —
:lys : fse?i er and if several such numbers are involved, Y and Z are

number; in other cases, it will provide a suitable decimal point. Unknown
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Iirational Numbers

>

It is poss1ble to draw squares with areas that are not included in the

- list of square numbers ‘but the length of their side will not in general be.a

Whole numbelr of umts

L1

For instance, the sq_uare_

has an area of 2. (The reason for this is eXplaJned on page 20 Can you~

guess’it?). Its area is a whole number of squares—tvvo—but the length of

its side is someWhere between one ‘and two umts In fact, the s1de turns
out to be just a bit less ‘than 1% units long :

' The exact number giving the length of the side is called “the square

root of two,” which is’ a_nother way of saying “the number the square of

Wthh equals two.” There isa speCJal symbol for WntJng it, narnely

}
Obvmusly, other numbers ‘will also have square TOOtS. If a number

. belongs to the list of square numbers its square root Wlll be a whole
number the square root of 9 for mstance 1s 3:

\/‘=3‘.

However, V3, \/5, V6, V7 and most other square roots—including
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' V/2—are not so simply eic'pressed. They belong to an interesting (and very

latge) group of numbers called irrational numbers, which literally
means “numbers that do not make sense.” Their story is as follows.

Some 2500 years ago there lived a Greek mathematician named .

Pythagoras. He seems to be one of the first mathematicians whose names
are known to us, and he lived at a time when very little was known about
numbers and science. :

. Numbers, especially whole numbers, fascinated Pythagoras. He
discovered interesting rules concerning them, as well as a famous for-
mula about triangles which stll bears his name. He felt that there was
something particularly beautiful about whole numbers and that they held

~ the key to understanding nature.

Now obviously not every number is whole—there also exist frac-
tions and numbers with a whole and a fractional part, such as 1%. Still,

Pythagoras believed that if a number is not whole, it can always be given .

by two whole numbers, one divided by the other. For instance, 1% is 3

divided by 2, or % for short (also written 3/2). This is nowadays called the

“ratio” between 3.and 2—literally, “the sensible way” of combining 3 and
2 into a single number. (The word ratio comes from Latin, the language
of the ancient Romans, which has contributed many other words to En-
glish. The Pythagoreans spoke Greek and used a different name, based on
the Greek word logosi from which the English “logic” is derived. How-
ever, their word meant the same as “ratio”—it was to them, you might
say, “the logical way” of combining two numbers.) ,

) Any whole number and any number containing a fractional part
(“mixed number”) can be written as a ratio. Furthermore, if you happen

to be familiar with decimal fractions, you will realize that whenever such-

- a fraction (or indeed any number which contains the decimal point)

comes to an end on the right hand side of the decimal point, it too can be
represented as a ratio. All such niumbers are called rational numbers: for
example, 3/2, 22/7, 355/113, 2.54 =.254/100, and 137 = 137/1 are all ra-
tional. ’ :

Pythagoras had students and friends to whom he taught his ideas
and discoveries. Together they formed the “Pythagorean Brother-
hood”—a society devoted to the study of numbers and of nature. For a
while the society grew, in spite of some very strange beliefs held by its
members. Then one day a member of the society made an- unexpected
discovery: contrary to what he had been taught, not all numbers could be
expressed as the ratio of two whole numbers. In particular, the number
V2 could not: one can find fractions that come as close to it as we please,
but no fraction exists which gives V2 exactly. . )

The Pythagoreans called such numbers (in Greek) alogos which in
English translates into “illogical” (numbers), and we now use a similar

‘name of Latin (Roman) origin—“irrational numbers,” meaning either

numbers which cannot be expressed as a ratio or, if you wish, numbers
which do not make sense. At one time they were called “surds” in En-
glish, not on account of their “absurd” nature (though that, too, could be
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claimed) but from the Latin surdus, meaning deaf. What happened was a
slight error in translation: alogos also means “without a word” and this
caused an Arab mathematician, about 1000 years ago, to translate it as
“deaf”; later, upon further translation from Arabic into Latin, the lan—
guage of scholars in the middle ages, this emerged as surdus!

It is told that members of the brotherhood were deeply upset by the
discovery (one legend claims that they killed the discoverer in an attempt
to keep the matter secret), and it led them to question the.rest of their
beliefs: the society broke up soon afterwards. Nowadays we know not
only -that irrational numbers do exist but also that in a-way there are
actually many more of such numbers than there aré of the “ordinary” (or
“rational”) numbers of the kind that can be written as fractions. To show -
this, however, would be too complicated for this book. : -

The. proof showing why the side of a square W1th area 2 is irrational
is somewhat harder than the other discussions in this book and is there-
fore given in a separate section at the end. ‘

: The lmes of the ru]mg d1v1de the square into 4 tnangles each

: equal’ to half of a ruled ‘square. By puttmg the tnangles together
ina d]fferent way, two such squares can be constructed and thlS
therefore is also the area of the larger square '

3




ynal
ere-

Squares ca.n be cut into parts in many different Ways For mstance
one can lelde a square into: 4 equal parts like thlS

e}

-~_(If thlsgseems too hard a hlnt is glven
at the end of the hst of problems ) -

no two»pleces ‘when fitted into the .
square, together form a rectangle?
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-and severalishort sides of lencth 1 magjne
now that the big squareis a box into which the
4 pieces must be fitted. The bottom of the box:

22

(3) Show that it is newver possible to cut the
square into 4 pieces each of which is
shaped like this:

(4) Take away one cornér of the big square, leaving the shape drawn
below:

Can you divide this shape into 4 equal pieces, each of
which has the same appearance as the big shape?

ta

Hint for solvmg the first problem
Each of the pieces has a long side of length- 3

is 4 units long. Suppose first- that no piece touches it Wlth its long side.

;/There is then only one way left for coverlng the bottom: by having every
one of the 4 pieces touch it Wlth ore of its short sides. But sucha solutlon_

could never Work smce no p1ece Would then be long enough to reach the
fop! -

ThlS 1eaves only one p0331bﬂ1ty one plece must touch the bottom
with its long side— : . -

like this: =——p—————— orlike this:

Fitting the remaining ‘pieces is now quite easy. Two solutions are pos-
51b1e—depend1ng on which of the above two positions you have started -
from—and you can’ get each of them from the other one by “flipping it
over” (try looking at it against the light from the reverse side of the

.. paper!). -
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Triangles

A trlangle is a shape formed byfth,i"é.e;straigh’t ]lnesmeetmg a_,t’fh}f??
- corners, as shown here: : . , L

AR A

_._,\
i

therefore simply means a shape with three gles. - -

" A corner between. two straight lines 1scalledanangle, and “triangle”

irted -

and so afe any two edges of this page which meet at a corner.

In particular, each of the four corners of*asquareforms what is

called a right angle, and rectangles are so named because all their angles
are of this kind. A triangle may have a right angle, but never more than

one. Are there any right angles in the triangles drawn above? .

Two lines that meet at a right angle are s4id to be perpendicular to

each other. These two lines are perpendicular

j
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Solutions

Dividing Up Squares:

Problem 1

Y,
O

Problem 2:

If pieces were .

- allowed to form .
rectangles, this
would be another —
““ solution:”

o0

s ) , fori . the one in the b __left corner.
So‘ e piece must cover i a_nd thls cah o ybe done in on of th two Ways
“shown belo

o/

marked w1th a dot so'a so] ﬁon 1s 1mp0531ble‘
Problem4: - '
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We now draw a line perpendicular to the bottom beginning at the oppo-
e’ comer—hke the broken line in the drawing shown here:

This is called an altltude (or height) of the tnangle Note that we
ay an altitude, not the altitude: by turning the same triangle around,
ach of the other two sides may be made the bottom, and a different al—

herefore has a total of three altitudes. If a triangle leans over so that its
op sticks out to one side, it is still possible to draw an altitude from the

‘top corner; however, it Wﬂl not meet the bottom of the triangle—only the

conunuanon of the bottom as showm in the fodo*mng drawing. .

To sum up, you now know the mea_ning of these t'er'ms‘:'

Triangles o
Angles : ‘ :
/. Right angles '
Lines perpendicular to each other
" The altltudes of a triangle

Y N
e ..

" You are now ready to ﬁnd out somethmg less sunple about tne

tnangle what is'its area?

T6 find the answer, let the triangle again have orte of its 31des asa
flat bottom—or to use the proper mathematical name, as its base. We

Pl




" B.Then, as the drawing shows, the unknown area X ¢f the triangle can be

draw the altitude to this side and enclose the triangle in a rectangle—like

il .

/
T PR

NENIAN

to pull the rectangle apart along the altitude of the triangle: =~ -~

-

S|
e i

AT

{ : . ?
In each of the pieces, exactly one half belongs to_the triangle; so

the triangle must equal half the rectangle in area.’ .
The height of the rectangle is the same as ‘the altitude of the tri-
angle, the length of the rectangle is the samé as the length of the tri-

The area of the triangle ig half of that, so:

angle’s base: its area therefore equals the product of these two numbers:

: ‘fA;'r'ea of triangle = 1% % length of base x altitude. A

~

It is interesting to riote thatone getsthe same result no matter

which -of the three sides of the triangle is uséd as base. Of course, the

altitude is usually different for each choice of base. ‘
© .Our résult is.also correct for a triangle which leans over so.that its

altitude, only nieets the continuation of its base. Let ‘the length®of the

altitude be:denoted by the letter A and the'l-en'g‘th of the base by the letter

N
L

The tnangle has half the area of the rectangle. To see why, ivtm‘is best
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tis best

* All the triangles here have the same altitude A, and therefore
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“obtained by subtracting the ares of a triangle with base C from the area of
~ a larger triangle with base B+ C): :

X = Ak @e0) Y waave
= “2XAXB + BxAxcC - Y% xAXC

In the last equality we have _dr(_)pped

“axAxC - 1{2><’Aj><_c

since a number minus itself always amounts te zero. What remains is the
same result which was derived earlier for “‘ordinary” triangles.
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Triangular Numbers

Small children then ‘S?;at:k playblocks in tﬂengle-shebed piles like

Each layer. here has one block less-than the one below it. Food
stores also sometimes stack boxes or cans in such piles. When dranng a
pile like this on squa_re—ruled paper, one must cut through some of the
squares; however it is possible to draw triarigle- shaped ‘piles without
cutting through squares if we shift the blocks so that one s1de of the pileis
stralght or lf we draW bnck—shaped blocks :

i
“The number of “blocks” in any of the precedhig drewmgs is

1+2+3+4=10.
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1t is the fourth in the series of “triangular numbers” (“triangular” means

“related to triangles”) which give the number of blocks in triangle-

shaped piles. The first five such numbers are:

1 3 8 10 | 15

Triangular numbers by the way, were discovered by .the Pytha-
goreans. They considered the arrangement of 10 blocks or pebbles in a
triangle and the number 10 associated with it as particularly important,
and called it the “holy tetractys” (tetra is “four” in the Greek language,
and 10 is the 4th triangular number).

While there is a short way of writing down square; numbers, none is

“available for triangular numbers. Let us therefore invent one: let a tri-

angular number be marked by a triangle, with a number at the bottom
right corner giving its place in the series of such numbers. For instance,

A,

is the 4th tnangular number, representing a pile with 4 blocks in the
bottom row. We will call it, for short, “triangle- four.” Since the pile repre-
senting this number contaJns 10 blocks we may Wnte

and you may read this, if you wish, as “triangle-four equals ten.”
The first two triangular numbers are

A;=1 and A,=3.

Solution




"To get the next triangle we add a row of 3 blocks below the pile we

already have

g

To find ‘A4-,2eriadd a row of 4 blocks below the existing ‘Pilé :
1 S .
Candget e

Th.lS process can be contmued asvmany t].mes as one VV.lSheS The.
rule 1t gives should by now be clear: any triangular number can be found

by adding the. small number with’ ‘which it is. marked (its index,” as such
-numbers are called in mathematlcs) to the tnangular number commg
before it For instance, LT TN - S T :

<
N
< : |
and so on - -
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~ This is a rather slow method: to reach A, one must carry out 8
itions. Is there a faster way? Yes indeed, as will now bé shown. - ~

For example, let’s find A,. We begin by drawing a pile of Ag Squares
of our square-ruled paper, in such a way that the bottom and one side of

the pile are both straight:

Next we add another such pile—but draw it upside down:

.. J
A 2
i
5. 1.
R H Y . - .
I
’ bl C
.

T ‘If‘sz’ie"btiShé{s the two figures together one gets'a rectangle. The

height of this rectangle is the-same as that of one of the triangular piles—
thatis, 6 umts TheW1dth of thé rectangle is one-unit moré than the width
- of'a pile—n the present case, this means 7 units: R
- The number of squares cortained in the réctangle is therefore
6 x 7 =42,
and this is equal fo the number of ~s~quéres in two ’.‘equal plles
o ' Ae + Ay = 42. e e

To get A; we must take half this number—that is, we divide'by 2:

4 4 a
CE? Ao = F =21,

“This agrees with the result found earlier by simple addition. The
same rule works for other numbers, too. To find A;, multiply 7 by the
number following it—which: is 8—and then divide the result by 2:

9 P} B}

A, =;_.7><(’7+1)=7><8 56:28.



It makes no difference here if one first divides one of the numbers
and only afterwards performs the multiplication. For instance, one could
first divide 8 by 2 to get 4, then multiply by 7 to get 28: thisis actually a -
simpler way, since one then. deals with smaller numbers.-

Next comes

_8Xx(8+1)_8x S_T72_
Ag S 5 5 = 36,

or, if you prefer to divide first and multiply last,

A, =8 ;8+?)= gx 9=4x9-= 36
You may test A, yourself, if you wish.
All this can be written neatly in a Sformula:

_ N xX(N+1)

Ay

' To use the formula, one replaces N with the appropriate number
and calculates the result, ~~ .~ T - ¢ e SRR

. There'is"a story related to_this formula, concerning a boy named
~-Carl Friedrich (German for Charles Frederick) Gauss. He was born in
‘Germany, to a poor bricklayer, in the year 1777—one vear after the U.S.

o ~Declaration of Independence was signed. '

- TFrom his early childhood Gauss was interested in numbers—in
later years he used to say that he could count before he could talk. Once
~when he was three years old he was present when his father was-calculat-
Ing the payment to a group of workers in which he served as foreman. To
everyone’s surprise, little Carl told his father that there was a mistake in

his sum—and when the calculation was checked this was indeed found to
be the case. S o
' - When Gauss was ten years old his class was taught by a man who
apparently did mot believe in spending much of his tirne teaching. He
‘gave the children a long exercise in addition—adding together the first
100 whole numbers: '

\ s

< 1424344+ ...499+100.

The teacher figured that this would keep the children busy for the

" hour, adding up number after number on the little chalkboards used in

schools in those days. He himself, of course, knew by the formula‘that the
answer was.. ’ ' : :

?

=50 x 101 = 5050.

00 x
Avso - 1 >2<101
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‘However, no sooner had the teacher completed giving the problem
when Gauss wrote one number down on his board, slapped it down, and
announced that he had finished. o

Indeed, when finally all the children handed in their work, Gauss

was the only one with the right answer. Later he explained how he did it.

Hearranged the numbers in pairs, working from both ends of the list:

abers
could

_and so on. The hundred numbers fo
101, so the answer had to be

1 4+ 100 = 101
) 2+ 99 =101
3+ 98 =101

rmed 50 pairs each of which equaled

50 x 101 = 5050.

The teacher was sufficiently impressed to buy Gauss an advanced
textbook on mathematics. Gauss later became a famous mathematician 3
and scientist: he carried out ‘the'ﬁrs‘t‘eXac’t’méasJurements of the earth’s
magnetic attraction (a basic unit in magnetism is called the “gauss” in
his honor), investigated the laws of probability, and derived many impor-
tant results in mathernatics. : E



The Sum of | Squar es i |

at is, the formula

not read the preceding discussion but just saw the

me'y 1f ufeltsomeWhat SUSPICIOLIS about
of quality sign, you might have said,

" stanids a s numbe: tself must also be a whole
- ‘number. But on the fight side there is a whole number divided by two,
and you know well that such division often gives a number with a frac-

~ tional part, not a whole number. Isi’t it possible this could happen here?
_ Thereisa very good reason why it never happens. If division by 2 is
to give a Tesult with a fraction, the number being divided must be odd.
‘However, N x (N+1) can never be odd: we get it by Tultiplying a
number by the number following it, and of two such numbers, one is sure
to be'even (two odd nuriibers never follow each other!). So either N or

- N1 can be divided by two, and the samé is true for their prodtict: the

formula therefore never gives a fraction. There also exists a formula for
~ the sum of squares: . . e ‘

144494, +N =N XNHD _XG-[(Q*X. N+ 1],
You could try it for a féwﬂniimbéfé"'(iﬁcludiﬁg N = i)l‘éﬁa.\c.heck it
out, but the same doubt that was described before may still remain: how
- can one be sure that the number on top of the fraction-on the right can
always be evenly divided by 6? ‘ ;

L

.33
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1 to be divisible by 6, it must be divisible by both zand E

For a numbe
roduct of three numbers (the result of multiplyving

- 3. Furthermore, if the produc _'
them together) is to be divisible exactly by 2 and by 3, then at least one of

the numbers must be divisible by 2 and at least one (the same number or

| 4 different one) by 3. That much you probably know from your experience
- with numbers, although the exact mathematical proof is not so easy.

There is no difficulty in showing that the product

N x (N+1) x [(2 x N) + 1]

can always be divided by 2, since we have just seen that one of the first

- two numbers in it must be even.
however: takes some more doing.

To show that it is also divisible by 3,
. Withre gard to divisibility by 2, every whole number N is either odd
or even. If N is even, it is exactly twice some other whole number M:

N =2 x M. (N even)

Ifitis odd, itis larger by 1 than some even number and must therefore be
of the form .

N =@xM +1. (Nodd

Similarly, with respect to divisibility by 3, any Whole‘number N
must belong to one of three kinds of numbers. It may be exactly divisible
by 3, and if so then a whole number M exists so that -

e

‘N =3 x M.

It may be larger by one than such a number:

N=@xM)+ 1

_Or it may be larger by two: ﬁ
N =(@3x M)+ 2 -
If it is larger by three, it will have the form : 3

N=(@xM)+ 3,

which is (M +1): we are therefore back to a number of the first kind. You
can check a list of numbers in their natural order and see for yourself that
the three kinds appear in a regular fashion, similar to the way in which
odd and even numbers alternate regularly. For instance: o

- and it is easily seen that it can be divided into three equal parts, each of -

C
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9= 3x%x3
10=(3x3)+1
11=3x3)+9
12= 3x4
13=@x4+1
14=@3x4)+2

and so on.

Now lét'us look at the‘ produét

| N x (N+1) x'['(z x N)t+ 1] ,

IfNisa number of the first kihd, one of the three 'n.umbers multl-
plied here is certainly divisible by 3—namely, N itself. '

If N is a number of the third kind, then N -Fl is divisible by 3, for
we have - » , ‘ ‘ o Lo

N+1=[@xM)+2]+1=(3 X M) + 3,

and it was already shown that this can be divided by 3.
, Fmally, if N 1sanumber ‘of_' the ,$ecbnd kmd, it can be Wﬁftéﬁh_s

N r N-Gxm+1

In that case, the last number of fthéé prédﬁctis
@xN)+1=N+N+1 |

=@XM)+1+(3 -><‘M)‘+‘1'L+ 1 . _
=@XM @XM +3 B

calculation much more quickly and neatly than is shown here.) In the last
sum each number can be divided by 3 and the same is therefore true.for
the sum itself. Thus nq matter to which of the three kinds of number N
“ belongs, one of the numbers multiplied in the product is always divisible
by 3and ' ' . .

(If you have studied some algebra you ought to be able to perform this
cal _ . .

N ><‘~(N.+1) X [(2_>< N):+, 1]
R ——
1salways a whole nﬁm}:"}er, o

‘
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The formula for the sum of third powers (“cubes™) is

1+8+27+.;.+N3={w2
2 ’

Where one first forms the number inside the large brackets and then
- squares it. Since the number being squared is Ay (and therefore Whole)
" we need not worry about fractions here.
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Magic Squares

i -
&

As in ‘_t}he\p,ljo___‘tlgle_m. with the pﬁsoner, we shall call these squares
cells for short. Becausé later some numbers will be written in these cells
each of them will be two units wide: - ¢

A Now here is the problem: Can the numbers from 1 to 9 be placed in
these nine cells in stich a way that we get the same sum of numbers'. ..

.- .inany column

.- orinany diagonal?
N

1 Ll C o _
I <
[} R

NAN

N\ NN A\
AN NRNNRNY
N

N N

N N
(\\\\

(A diagonal of a rectangle or a square is a line connecting opposite cor:
ners.) o o

'

338
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It is possible. : I :
Such squares are called magzc squares, and many mterestmg
~ things are known about them. Here we will show, step by step, how such
a square can be put together—that is, how one finds in it the proper place
for each number.

(1) THE FIRST STEP: THE SUM OF ANY COLUMN MUST BE THE SAME
NUMBER. WHAT NUMBER IS IT?

7 We follow a trick aJready used before when a number is not known,

- a letter is used in its place until its value is found. Here the unknown
~ numberis the sum of a column (or of arow, or a diagonal—they a]l should
have the same sum) a:ad will be "narked Wit ‘the letter N.

. Now, what is the total sum of all three columns? There emst two

ways of ﬁndmg the answer.

First, because each column. adds up to N three columns should
total

3 ><N f

Secondly, the three columns together contam all the numbers m
the square, that is, aul “‘e numbers from 1 LO u ths sum should be

1+2+3+4+5+6$7¥8+9=%

Omne could find A9 by. addmg all the numbers on the leFt but it is
faster to use the formula for tnangul ' numbers

-

9 x (9+1 9 x 10 - _
Since both ways of addmg up the three columns should lead to the
same result, we must have

<

3><N 45

If three tnnes N equals 45 then N must be one th]rd of 45, or

N=22 =15

Therefore, each colurnn, row,
or diagonal adds up to 15.

I'e)
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(2) THE SECOND STEP: WHERE DOES ONE PUT THE NUMBER 92 -

. Letuscheck how many sums of three different numbers exist—out
of the numbers available to us—that add up to 15 and contain the number
9. We have

9+1+5=15
9+2+4=15

and this is all: the sum

9 + 3 + 3 =15 ;
cannot be used for every number may appear only once Therefore the
number 9.can appea_r (at most) in only two such sums. - '

Because of this, 9 cannot appear in the middle cell, for then it
‘would have to belong to four dlfferent sums, marked by arrows in the
drawing: -

TINCT 2 ‘
AN I B
dl % ; ;
211N
. 7 e AN

v

It cannot even be in a corner for then 1t Would belong to three different




‘It must be on a side, where only two sums are involved: -

—out
mber

y
‘e the S
- .We must therefore have: :
len it N
n the
1A * *
. | ~ |
- Of course, 9 could appea:r in any other side"be]l; but oné can always
~ bring it to the position drawn above by turning the square around:

erent

(3) THIRD STEP: WHERE DOES THE NUMBER 1 GO?
This is solved in much the same way as "ﬁnding where to put the 9.
The number 1 can only belong to two sums:

1+9+5=15
v 148+6=15.
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The third possibility
1+ T+ 7=.15 ;

contains the number 7 thce and therefore may not be used Like the
number 9, therefore, the number 1 cannot ﬁt mto the middle ce]l or a
corner but must be placed: on aside. . _

Note also that one of the sums conta_mmg the number 1 also has in
it the number 9. This means that 1 and 9 are m the same row:

. (4) THE REMAINING STEPS: -

The other sum which mcludes 1“‘i's,

1+8+6—15

Letus add it to the maglc squa_'re (We could 1f we wished, exchange 8 and
6): . . . L .
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: By noting that the dlacronals also must add up to 15 two more numbers
may be added:

_ike the
zell or a

% ¢ o

ohasin

, Eiving this as the final -

o
ke

. \f 8 sums each of .
i ‘dlagonals If we -

‘ ‘SSumsandno,.
. : s1des them Keepmg thlS in mmd see 1f you can dls-

cover the tnck"m he- “game of 15”: " "

; gj'On a table Fa'ce up;” there are 9 slips’ of paper maxked VVlth the

: 'numbers 11t0.9. Two' players take turns, each time taking oné slip fromv
~among those left on the. table: .the ﬁrst player to possess 3 slips with
.numbers adding up to 15 is the winner. If, after all the slips have been ()D
picked up (one player then has 4 slips and the other one has 5), neither of O
_-the players has in his collection 3 slips adding up to 15, the game is

declared to be a draw. Suppose you were asked to play this game—how

would vou choose the slips you picked up?

Hint: Remember the magic square! The answer 1s given on
_Ppage 46.




Larger Magic Squares

Larger “magic squares” also exist. For example, here is a “four by
four” magic square (four rows of four cells each).

J
— §i2 £ Vo 3 i
L~ § --fy [JC)
L g
2 112
o i 3]
Q i
4 s
] I ~ Y.
; Y T 7

The “magic number” here is 34; one can prove that it must be 34
by a method similar to the one by which we showed that the “magic
number” of the smaller Square was 15. (The proof is given on page 49,
but try first to arrive at it by yourself!) This particular square is famous for
being included in the picture “Melencolia I” (Ihere is a Roman numeral),
drawn by the great German artist Albrecht Direr in the year 1514: it has
the date of the picture cleverly hidden in the two middle cells of the
" bottom row. (The sound of German 7 is pronounced like “ee’ but with lips
puckered, as if you intended to say “00”. -

An interesting problem is connected with this particular square.
So far we have discussed magic Squares, but there can also be other

44
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ELANCHOLIA. B-6,547. Albrecht Durer. National Ga
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“magic” shapes. Take for instance a 4-by-4 square with the bottom
right-hand corner missing, as shown in the drawing. '
There are 15 cells in this shape. Can one place in them the

numbers from 1 to 15 so that the sum of every row, col-

umn, or diagonal is the same (namely, 30)? It is possible:

can you do it?
Hint: the solution is closely related to the magic

square of Albrecht Diirer. Although the problem appears to
be quite difficult, there is a trick by which the right answer
can be found almost immediately. It is explained on page
52.

Among the many people who enjoyed magic squares in the past
was Benjamin Franklin. Franklin made up ‘magic squares to pass the
time during long and boring sessions of the Pennsylvania General As-
sembly—the law-makers of colonial Pennsylvania—where he was ap-
pointed clerk in 1736. He later wrote: ‘

In my younger days, having once had some leisure, (which I still think I
might have employed more usefully) I had amused myself in making these
kind of magic squares, and, at length, had acquired such a knack at it, that I
could fill the cells of any magic square, of a reasonable size, with a series of
numbers as fast as I could write them, disposed in such a manner, as that
the sums of every row, horizontal, perpendicular or diagonal, should be
equal. . .

NE——

~l u{-: nn
viuluiuil

The “game of 15”:

Imagine yourself as one of the players. Draw a ‘“three-by-three”
magic square, with its nine numbers, and as the numbered slips are
chosen, draw on the square an O around each number taken by you and
cross out with an X each number picked by the other player:

, At any given time, the unmarked numbers on the magic square
represent the slips that still remain on the table, and whenever it is your
turn you will place an O around one of the numbers. Choose the number
on the square before picking up the slip that carries the number. If you

can, choose it in such a way that the O you mark gives you three Osin a |

straight line (row, column, or diagonal), for then the numbers on the slips
to which they “belong” add up to 15. If this is not possible, place your Oin

~a way that will help you get three-in-a-line later on.

" By now you have surely guessed the trick: if you mark the chosen
numbers with Os and Xs on the magic square, playing the “game of 15”
becomes exactly the same as playing tic-tac-toe. If you are skilled in tic-
tac-toe, you should have no trouble placing your Os so that either you will
be the winner or the game will end in a draw.

L
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Of course, Franklin must have used some special method to pro-
duce magic squares with such speed. Several such methods exist, and
one of them is described in what follows. It works for any magic square
with an odd number of cells on each side.

The method, by the way, bears the name of a Frenchman, Antoine
de la Loubere, who learned it while visiting the Kingdom of Siam (now
Thailand) in the years 1687 and 1688. It had been known for many years

before in Siam, India, and neighboring countries.
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To show how the method works, we will use it to produce a five-by- Z Rul
five magic square. Let us begin by drawing a five-by-five square and then =
adding three other squares of the same size to the right of it and above it,
as shown in the illustration.
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One begins by placing the number 1 in the top middle cell (as
shown in the drawing) and then proceeds to add the numbers following 1,
in their natural order, using three rules.

Rule 1: Always try to advance diagonally upward to the right, like this:

| ‘z

]
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Rule 2: Sooner or later, as one advances in the diagonal direction, one
' may arrive outside the main magic square, in some cell belong-
ing to one of the additional squares. The appropriate number
then goes into the cell having the same position in the main
square. :

For instance, by the first rule the number 2 would go into
the cell to the right of the bottom middle cell in one of the
additional squares. It is instead placed—by the second rule—to
the right of the bottom middle cell in the main square. '

A}
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Rule 3: Occasionally, as one follows either of these rules, one finds that
the next cell to be filled already has a number in it. One then
drops down and fills the cell below the last one (not below the
one that’s blocking the way).

Solution

The “magic number”:

00

If M is the ‘;magic number,” then
4><M=‘A16=1/z><16><17=8><1’7=136.

Therefore M is one quarter of 136: dividing 136 by 4 then gives M = 34.
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The next drawing is the complete square. We also show there (with
small numbers in the shaded cells) where some of the numbers would
have been placed if the second rule were not used. Note that by the
second rule, the number 16 should occupy the space already taken by 11:

by the third rule one must therefore descend one space and place it below
15, as shown.
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The seven-by-seven square derived by the same method is;given below:
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If you have followed the construction of these squares, you can
easily handle bigger ones. Soon you will find it no longer necessary to
draw the additional squares and will develop just as much of a “knack” at
it as Ben Franklin himself had!




How long is each square on our ruled paper? .

: Before we can answer this, we must know more about measure-
‘ment of length. In the United States length is usually measured in
" inches. This rectangle is one inch long:

C

* This one—two inches:

Fi.

N

VA’///V///Ar

Three inches:

To measure length, a ruler is used. The type of ruler used in
schools and offices is usually 12 inches long—this length is called one
foot—and there are generally marks along its edge, dividing it into inches
and into parts of inches—halves, quarters, eighths, and sixteenths.

The squares on square-ruled paper are usually a fifth or a quarter
e of an inch long, that is, a row of 5 or 4 squares has the length of one inch.
A The drawings in this chapter are all made on paper with five squares to

the inch.
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ut what is an inch? :

The word inch comes from Latin, the language of the Romans,
who 2000 years ago already had a complete system of measurements.
(Our names for the months of the year also come from the Romans.) In
Latin, uncia (pronounced “oonkyah”) means “one twelfth”—in this case,
one twelfth of the length of one foot. In Old English it came to be spelled
ynce (pronounced “incha”), and eventually it acquired its modern form.

‘Curiously, the word ounce also comes from the same source (but
via the French unce or once). Cur pound started as a Roman unit of
weight called the libra, a name still echoed by the abbreviation “Ib” used
for the pound. This Roman “pound” however, was only about 34 the size
of the modern pound. The Romans used the word uncia to describe one
twelfth of the weight of one pound, as well as one twelfth of the length of
one foot. The French word for the weight unit gradually became the
English ounce. The pound was later changed to contain not 12 but 16
ounces, but each ounce remains almost the same as the uncia of the
Romans. The old “troy pound” used by jewelers in weighing gold and
silver still has only 12 ounces, though these “troy ounces” (which were
first used in the French city of Troyes) are slightly larger than the regular
ones.

Now, back to the measurement of length. The inch, as we have
seem, is related to the foot, which—as the name suggests—is about equal
to the Iength of the foot of a grown person. Hundreds of years ago, at
places where people did not have a marked length which they used as a
standard foot of length, the feet of actual people were indeed used for
measurement.

Solution

The magic nonsquare:

If you increase every number in a magic
square by the same amount (say, by 3) the resuit is
still “magic”’—that is, the sum of each row, col-
umn, or diagonal is still equal. Of course, the
smallest number in the square is then no longer 1 ¥
(if you added 3, it would be 4). '

Similarly, if you take Diirer’s square and subtract 1

~ from each number in it (making the largest number 15), the result is still

“magic,” but the smallest number is now zero, appearing in the bottom
right corner. Since the zero makes no difference in any of the sums in
which it appears, we get the same sums even if we cut that corner out—
leaving exactly the “magic shape” we wanted! The original “magic
number” was 34. The new one is 30 because in subtracting 1 from each
number we are also subtracting 4 from each sum.
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Here is one pr‘escription, said to be over 400 years old:

omans,

‘ments. To find the length of a rod in a right and lawful way, and according to
mns.) In scientific usage, you shall do as follows. Stand at the door of a church on a
1s case, Sunday and bid sixteen men to stop, tall ones and small ones, as they happen
spelled to pass out when the service is finished: then make them put their left feet

one behind the other, and the length thus obtained shall be a right and

1 form. lawful rod to measure and survey the land with, and the sixteenth part of it
ce (but shall be a right and lawful foot.
unit of -
?” us:ed ‘ Thus, to make sure that the length “one foot” was the length of an
ne size average foot, one measured not just one person’s foot but 16 feet placed
ibe one one behind the other, each belonging to a different person! A few of these
ngth of people would have large feet, others would have small feet, but with 16
me the . different persons this would usually even out—more or less. The total
but 16 " -length was called a rod and the sixteenth part of it was “one foot.”

of the In later times, of course, the governments of both Great Britain and
ld and the United States had a “standard” ruler for measuring the exact length
h were of a foot, (actually, the length marked was one yard, which equals 3 feet).
regular All other rulers and measurements had to agree with this “standard.”

Other old measures based on the human body include the hand and

e have the span. A “hand” is 4 inches long and is (more or less) the width of the
t equal adult hand; it is still used in measuring the height of horses. A “span” is
ago, at the distance between thumb and little finger when a hand (the “average”
ed as a hand) is stretched as' wide as possible: it is taken asabout 9 inches. The
sed for Bible mentions the cubit, the distance from the elbow to the end of one’s

- stretched fingertips: it is approximately 18 inches, or a foot and a half.
—The giant Goliath, whom David killed with his slingshot, is reported in.
.. the Bible to have had a height of “six cubits and a span” (I Samuel xvii.
~ 4). With the preceding information you should have no trouble in convert-
«-ing this into feet and inches! ' ‘

L
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Makihg Rulers

By means of square-ruled paper you can make your own rulers.
Suppose the squares are one-fifth of an inch wide: then by cutting a strip
of this paper you can make a ruler on which every inch is divided into five
equal parts:

v

Can we make a ruler divided in a different way—say with markings
one quarter of an inch apart? Indeed we can. The picture which follows
shows how this is done—or more exactly, how an inch is divided into 4
equal parts:
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The line from A to B is one inch long. In order to divide it we use the
square ruling to draw a bundle of 5 lines which are all parallel—that ig,
they all have the same direction—so that the distance between any two
neighboring lines in the bundle is the same. Such a bundle cuts any part
of a straight line which crosses its way into 4 equal parts, and this is
exactly what it does to the marked inch.

To draw the bundle we add two lines perpendicular to the line
which we want to divide, one at each end—one of them pointing up, the
other pointing down. On each line we mark off some chosen length 4
times (which is easy to do with the square ruling). Connecting the marks
then gives the required parallel lines. Note that the two outermost lines
of the bundle really need not be drawn, for only the three inner lines are
required for drawing the dividing marks!

The same method can be used for dividing the inch (or any other
length) into any number of equal parts. For three parts we have

N
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A third of an inch used to be called a barleycorn—supposedly, the
length of a grain of barley. No one measures length in barleycorns any
more, except perhaps shoe salesmen, for the length of a shoe increases by
about Y3 inch whenever its “size” increases by one—that is, a size-8 shoe
is one barleycorn longer than a size-7 shoe, and so forth.

Many other old measures exist. The rod (or “pole”) was usually
taken as 16%% feet—not 16, as given in the prescription for measuring one

- foot. Four rods made a chain of 66 feet—the length of a chain used for

measuring land, introduced by the English mathematician Edmund
Gunter around 1620. Ten chains made a furlong and 8 furlongs a mile.
Of these, only the mile is still being used, although land areas are still
measured in acres, an acre being the area ofa rectangle one furlong long
and one chain wide. ’




Meters and Centimeters

Very few countries outside the United States still measure length
in inches and feet. Instead they use the “metric system” in which the
basic unit of length is the meter. One meter is slightly less than 40
inches, so you may think of the meter as a “long yard” (1 yard = 3 feet). -

Addmor’al units of length exist in the metric system and are used - -
for measuring distances much larger or much smaller than the meter.
They are all related to the meter and this relation always involves num-
bers like 10, 100, or 1000: no odd:sized numbers like 16%% or 5280 (the
number of feet in a mile) ever appear.

Here are some of these units:

A decimeter is one-tenth of a meter a.nd comes very close to 4
inches: : ©

four IOV _inches '

Il one decimeter

A centzmeter (written cm for short) is one-hundredth of a meter.
There are 10 centimeters in each decimeter:

| N 7777 W 777/ W 77, W 7, W 1)

In Europe square-ruled paper generally has squares half a centi-
meter wide. It looks almost exactly the same as paper ruled with 5
squares to the inch. Only by using a very accurate ruler, or by trymg to
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= f match the edges of two sheets, one of each kind, can one tell apart the two
" . types of ruling.

One-tenth of a centimeter is a millimeter (mm for short) and there

are 1000 millimeters in a meter. Paper with square rulings spaced one
millimeter apart looks like this:
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Decimeters, centimeters, and millimeters are all used for measur-
ing small distances. Large distances are measured in kilometers (km for
short), each of which equals 1000 meters. One kilometer is somewhat
longer than half a mile—in fact, 8 kilometers come very close to 5 miles,
so that a speed limit of 50 miles per hour in the U.S. would translate to 80
kilometers per hour elsewhere. A friend of mine who visited India some
years ago reported seeing there a road sign giving the speed limit as
24 km per hour: he wondered why such a non-round number had been
chosen and then realized that the country had just changed over to the
metric system and that the sign he saw probably replaced an earlier one
which had read “15 miles per hour.”

The meter (its name is from the Greek word for “measure”) was
introduced in France in the year 1791, to replace the old French system of
units. That system had included the French “foot,” supposedly the length
of the foot of the famous King Charles the Great (“Charlemagne’) who
lived 1000 years earlier: it was slightly longer than the English foot (also
used in the U.S.). Perhaps the difference had to do with the “greatness”
of Charles. v

The meter, on the other hand, was based on a quite different stan-
dard—the size of the Earth: it was supposed to be equal to one part in 10
million of the distance from the pole of the Earth to the equator. The
French actually measured a distance on Earth (it is enough to measure
only part of the distance from the pole to the equator, if appropriate
astronomical observations are made at the end points) and- from this
found what they believed was the proper length of one meter. This length
was then marked by two scratches on a metal rod, placed one meter apart,
and the rod became the ‘“standard meter” with which all rulers and
measuring mstruments were compared. :

By the way, in addition to the meter there exists one other unit of
length related to the size of the Earth, namely the nautical mile (“nauti-
cal” means having to do with ships and sailing). The distance from pole to
equator is also a quarter of a “great circle” passing through both poles of
the Earth, and circles (as well as angles) have been traditionally divided
into degrees—360 degrees in a full circle. Each degree in its turn is
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divided into 60 minutes and each minute into 60 seconds (to avoid con-
fusion with units of time, these are often called ‘“minutes of arc” and
“seconds of arc”). :

One nautical mile is defined as equal to one minute of arc on the
“great circle” just described. How far is' this in meters? The answer,
together with some more facts about nautical miles, can be found on
page 61. ’

But back to the “meter.” Later measurements found that an error
had occurred and that the distance between the scratches differed slight-
ly from one ten-millionth of the distance between pole and equator, but it
was too late to change the units. Nowadays there exist measurements
which require more accuracy than can be obtained by measuring the size
of the Earth, or even the distance between two fine scratches on a metal
bar. Instead, the length of the meter is nowadays related in a complicated
way to the atomic properties of matter (like the wavelength of light emit-
ted by certain atoms)—properties that can be measured very precisely
and (supposedly) never change. '

Will the United States ever switch to measure in meters? Probably,
yes—perhaps even fairly soon. The British (who use the “metre” spell-
ing) started doing so in 1965, stretching out the change over many years,
and the U.S. now remains the last large country still measuring distances
in feet and miles. Scientists everywhere have been using the metric sys-
tem for many years. And you might say that (in a way) the U.S. already
has switched to the metric system: on April 5, 1893, a law passed by
Congress ordered that all units of length in this country be defined by the
number of centimeters they contain and not in terms of any ‘“standard”
foot or yard! e ’




(Games

There are many games that can be played.on square-ruled graph
paper. Two of them are described here, each intended for two players:

Completing the Squares

. This game is said to have been invented by students who used
graph paper in their work at the French Polytechmc School, a famous
college for engineers.

Draw a squaye 8 units wide on square-ruled paper (bigger squares
may be used, but then the game takes longer). The square will contain
& =64 small squares which, as before, will be called “cells.”

The players now take turns tracing with a pencil one side of any
cell inside the big square: since square-ruled paper is usually printed in
light blue, the traced sides will be plainly visible. Any side which has
already been traced may not be traced again; this includes the borders of
the big square, which were already traced when the square was drawn.

The aim of the game is to enclose cells from all four sides. A player
who manages to enclose a cell (by drawing its fourth side) receives a
point, and at the end of the game whoever has more points wins. For
instance: -

if a player traces this line . . . - . . . he gets a point for
: enclosing this cell.

/ ]

% T TTTCE

I




60

Next to a border only three sides have to be traced to enclose a cell;
and in the corners, only two sides: the player who traces the side of a
corner cell thus gives his opponent a chance to score a point at the next
turn. Players who have scored a point get a free extra turn; and if they
score on that, another free turn, and so forth—they continue tracing lineg
until they stop scoring. -

At the beginning of the game it is easy to trace lines in a way that
will not allow the opponent to win any points. But as the area is filled, this
becomes more difficult; and near the end one often finds that any line
drawn will enable the opponent to score. The problem then is which
move will give away the fewest cells!

Battleship

Back in the days when wars at sea were fought with big guns rather
than with missiles, a battleship was a large warship protected by thick
steel armor and carrying guns of great size and range. The name itself
comes from the earlier days of sailing ships, when a common way of
fighting a battle at sea was for the biggest ships to line up one behind the
other so that their guns (poking out from their sides) were all pointed

- together at the enemy. This was called the “line of battle” and the ships

were accordingly called “line-of-battle-ships” or “battleships’ for short
(another term fgr them was “ships of the line”).

A smaller type of warship was called a cruiser (a few of these are
still in use as this is written), a still smaller one a destroyer. Ships of any
of these kinds usually fired their guns in groups, with several guns firing
at once at the same target: this was called a salvo.

Each of the two players taking part in the game receives a sheet of
square-ruled paper. On it each draws two squares 10 units wide—one for
marking the position of the player’s own fleet of ships and the other
representing the area where his opponent’s fleet is hidden. The squares
are labeled as shown in the drawing that follows:
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THE ENEMY'S FLEET MY OWN FLEET
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In this way, each .. .and each row
column is labeled _
by one of the first 1
10 letters of the 5 }
alphabet . . . |

is labeled by a number |
between 1 a_nd 10.

Solution

The nautical mile:

A ‘“great dircle” contains 40,000,000 meters and also.
360 x 60 = 21,600 minutes of arc. Dividing one number by the other
gives the length of the nautical mile as 1852 meters, to the nearest meter.

The speed of ships is traditionally measured in knots, where one
“knot” equals one nautical mile per hour. The reason for this odd name
goes back to the time of sailing ships, when a ship’s speed was measured
with the help of a long rope in which knots were tied a fixed distance
apart. The beginning of the knotted part was marked by a piece-of cloth,
and some distance beyond the cloth, at the end of the rope, a wooden float
or “log” was tied. ' ’

In order to begin measuring the speed of a ship, the log was tossed
overboard behind the ship: as the ship moved away from it, the rope was
gradually pulled out. The moment the piece of cloth pas sed the end of the
ship, a sandglass (“hourglass”) timed to empty in 28 seconds was turned
upside down, and the number of knots which passed overboard before the
sand ran out was counted: clearly, the faster the ship moved, the more of
the rope and the more of the knots went by. The distances between the
knots and the length of time during which they were counted were all
chosen in such a way that the number of knots counted was the same as
the speed in nautical miles per hour. )

The results of all such measurements were noted down in a “log-
book” and from them the captain could carry out a calculation (“‘dead
reckoning”) giving the expected position of his ship. The name ‘“log”
is even now still used for the instrument by which a ship’s speed 1is
measured.
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Using these labels, each cell inside one of the big

squares can be

identified by a combination of a letter and a number, giving together the
column and row to which it belongs. For instance, cell A1 is the one in the

top left corner, belonging to column A and torow 1. In th
remaining three corners are J1, J1 0, and A10.

€ same way the

Each player now places on his (or her) own square (without the

opponent seeing it) a “fleet” of four “ships”:

l

l

ONE BATTLESHIP ONE CRUISER TWO DESTROYERS

These may be placed ahywhere——horizontally (along a row), Verti;
cally (along a column), or diagonally. If diagonally, they may appear like

this:

E

f

BATTLESHIP CRUISER DESTROYERS

No two ships may touch each other, even corner to corner. For a

sample game, “my own fleet”’ might be placed as shown at
ustration below.

the right in the
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The two fleets now take turns shooting at each other, in salvos of 7
chots each. The aim is to hit and “sink” each other’s ships, a ship being
considered “sunk” if all its cells have been hit. For instance, a player may
begin by announcing that the first salvo is aimed at the following cells:

B5, C6, D7, E8, F8, G8, H8

As the first salvo is fired, the player doing the shooﬁng marks each
of these cells on the square labeled “the enemy’s fleet” by the number 1

" (as shown in the drawing). The other player meanwhile marks the same
- squares on the map of his or her “own fleet” and then announces which

Azaaa

" ships were hit and how many times, but not which shots have scored the
" hits. This is what makes the game tricky: if an attacker is told, for in-

stance, that the enemy battleship has been hit twice, he or she must still
guess which were the 2 shots that scored, in order to direct the next salvo
toward the other 3 cells of the battleship.

(It so happens, however, that if the salvo which has scored two hits
on the battleship is the one in our drawing of the enemy fleet, no guessing
is needed—it is pessible to figure out exactly where the rest of the battle-
ship is hidden. Can you do so? The answer is on page 66.) ‘

It is then the other player’s turn to shoot, and after that the first
player fires another salvo, marking each target cell with a 2. If any player
sinks a ship and can figure out which squares it had occupied, he or she
can mark around it a $safe” area where no other enemy ship could have
been placed, because the two ships would have touched. Each player also
marks the opponent’s shots on the square labeled “my own fleet,” to
prevent any later disagreement about the placing of shots. T
A player whose battleship is “sunk” loses 3 shots and thereafter
fires only 4 shots in each salvo (for this reason players often try to seek out
the enemy’s battleship first). Similarly, a player loses 2 shots with the
sinking of his cruiser and one shot for each destroyer. The player who
manages to sink all ships of the opposing fleet is the winner.

Different versions of the game exist. In one of these, each opponent”

fires only one shot at each turn, regardless of the number of ships left in

his fleet. The fleet in this case consists of 4 “battleships,” each having 4
squares; these squares may be arranged not only along rows, columns,
and diagonals but also in a square 2 units in width (an odd shape for'a
ship, though about 100 years ago Russia did use round ‘warships).
Another version, played on a 9-by-9 square, has one battleship of 4
squares, 2 cruisers of 3 squares, 3 destroyers of 2 squares, and 4 sub-
marines of one square each. Each salvo includes 3 shots, no diagonal
ships or square battleships are allowed, and a ship may touch the side of
the big square along at most one side of one square.




Coordinates

In the game of “Battleship,” every cell was labeled by a letter and a
number:

~

Maps of cities are often divided into cells in a similar way, as a help
" in finding the location of streets. Such maps usually have lists of streets
printed along the margins or on the reverse side of the paper, giving for
each street the cell (or cells) in which it may be found. If one reads there,
for instance, .

Lakeside Drive . . . D 14,

one knows that Lakeside Drive is to be found somewhere in cell D 14,
which saves the trouble of looking for it all over the map.
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Sometimes, however, it is not enough to say in which square on a
map a place may be found: it becomes necessary to pinpoint its position as
accurately as possible. A surveyor wants to know exactly where in a field
2 boundary marker is buried; an army officer wants to note down the
exact location of an enemy outpost in the middle of a forest or desert. How
can they use numbers to describe an exact point on their maps?

The scheme used in the game of “Battleship” and in city maps can
still be used here, but it must be changed slightly, as follows.

First, we must discard the alphabet and use numbers for both
labeled sides. Of course, with two sets of numbers serving as labels, one
must be careful to give them different names and not mix them up.
Next, let the numbers mark not the squares but the division lines:

each marked side then takes on the appearance of a small ruler. By gen-

.eral custom all markings begin at the lower left-hand corner: they pro-

ceed to the right along the bottom side of the map, which will be called
the x axis, and upward along the left edge, which will be called the y
axis. The markings on the edges then appear as in the drawing shown
here:

P ' Map

- 1
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With these markings we cannot yet label every point on the map—
but it is possible to do so for corner points at which two lines meet, such
as the point P in the drawing. Using the lines of the ruling, we draw from
P perpendicular lines to the two axes, as shown, and note the marked
distances at which these lines meet the axes. The distance marked off on
the x axis will be called the x coordinate of P while the distance on the y
axis will be the y coordinate of P (the word is pronounced “co-ordinate’).
The older names “abscissa” and “ordinate” for the two distances are still
sometimes used, while scientists like to shorten everything and talk sim-
ply about “the x and the y of P” (so will we, very soon). In particular, for
the example shown in the drawing, one can say that: :

The x coordinate of the point P is 3.

The y coordinate of the point P is 5.




This could also be put more briefly:

The coordinates of the point P are

x =3,y =5.

Either way we say it, the meaning is that the point is marked by two
numbers, 3 and 5. Or we could simply say:

P is the point (3,5).

Here we leave out most of the words, since only the numbers matter. This
is how mathematicians would write it, with the understanding that the x
coordinate is always the first number listed. This is nnportant to note,
because (3,5) and (5,3) are two quite different points, as the fo]lowmg
drawing clearly shows:
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Q Sinking the battle sh[ip:
o)

Among the shots fired, four are along a diagonal line and four are in
a single row, and the fact that the battleship received more than one hit
tells us that it could only lie along the diagonal or along that row. If it
followed the diagonal, at least 3 of its cells would have been hit, because a
battleship is 5 cells long; since that did not happen, it must lie along the
TOW.

Four shots reached that row, but only two of them scored hits: the
rest of the battleship must therefore be either to the right or to the left of
these four. On the right side only two cells are available, which is not
enough to contain the réest of the battleship: therefore the remaining part
of the battleship must be on the left, in cells B8, C8, and D8.




Coordinates for Any Point

, Up till now the “rulers” drawn along the axes were only marked in

whole numbers; but if fractions are allowed, the in-between points can
easily be marked as well. For instance, on either axis one might mark the
point halfway between 5 and 6 as 5% (or 5.5 in decimal fractions). In--
deed, any peint on an axis ran be identified by a number giving its dis-.
tance from the “zero mark” in the bottom left-hand corner—and this
number can be whole, fractional (like 2/11 or 3% or 5.65), or even irra-
tional! L )

The zero mark, by the way, has coordinates (0,0) and is called “the
origin”’—that is, “the starting place.” o )

‘Now that in-between points on the axes are labeled, one can easily
label any point on the map by its two coordinates. As before, one draws
from the point lines perpendicular to the axes, and the numbers as-
sociated with the points at which these perpendicular lines meet the x
axis and the y axis are the x and y coordinates belonging to the point.
Actually, of course, no lines have to be marked on the map—it is enough
to lay down a ruler along the directions of these lines and to note where it
meets the axes.

Here are some examples:
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There remains one drawback to our method of labeling points: we
can extend it as far as we please to the right and upward, but in the
opposite directions our way is blocked by the axes. This restriction is
removed if we continue the labeling of the axes on both sides of the
origin, using negative numbers as shown in the drawing:
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This continuation allows Iabels to be given to points anywhere—
even below the origin and to the left of it, something which was not
possible before. Some examples are shown in the drawing which follows:

you are invited to check each of them to make sure that it is indeed
labeled correctly.
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The system of coordinates described so far is the one which

mathematicians prefer, and some of its uses will be described later on.

You may hear it called the “Cartesian system” after the Frenchman René
Descartes (“day-cart”) who first described it in 1637. Survey and military

~ +d

maps generally arrange matters in such a way that only positive numbers
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_gppear as coordinates, and the finer division of the axes is expressed by

decimal fractions or in a way that is equivalent to the use of such frac-

" tions.

Maps of large areas—say, of all of the United States—require a
somewhat different system, made necessary by the fact that the Earth is
not flat but ball-shaped: but again every point is marked by two numbers,
called longitude and latitude. A similar system is used by astronomers to
mark the place of a star in the sky, only they call the two numbers right
ascension and declination.

Our coordinate system also resembles the labeling system for
streets used in many cities. Two roads serve as axes—for instance, Main
Street extending in the east-west direction and Central Avenue going
north-south. Parallel to Main Street (that is, going in the same direction)
we have, on the north side, First Street North, Second Street North (usu-
ally written 2nd Street N. for short) and so forth. Similarly, on the south-
ern side one finds First Street South (or “1st Street S.”), ond Street S.,
and so on, as shown here:
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Likewise there might exist a First Avenue West (“1st Ave. W.”p}\ and
a First Avenue East, and other avenues marked by larger numbers.
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The practice of having two straight main streets perpendicular tg
each other and meeting in the middle of a city is actually very old, dating
back at least to the early cities built by Greeks and Romans over 2000
years ago. Such streets divide the city into four parts, which were accord-
ingly called quarters. For instance, the old walled city of Jerusalem,

which is more or less rectangle-shaped, is divided in this mannerinto four
quarters, one to each corner: the Moslem (Arab) Quarter, the Christian
Quarter, the Jewish Quarter, and the Armenian Quarter (Armenians are a
Near-Eastern Christian nation). Indeed, the word “quarter” is sometimes
used in English and in other languages to denote simply a part of a city.
The old section of New Orleans, dating back to the time when the city

belonged to France, is still called the “French Quarter.”




Race Track - ‘ d

In this game, two or more players follow a “race track” drawn on
square-ruled graph paper, advancing marks which represent their “rac-
ing cars.” Just as it happens in a real race, here too some time is needed
for a car to build up speed, to slow down, or to change direction; and a car
entering a curve with too much speed risks hitting the edge and “getting

it was brought to the U.S. by Jurg Nievergelt of the University of linois.
‘A detailed description of it was given in Martin Gardner’s column

“Mathematical Games” in the January 1973 issue of S cientific American.
_ On a sheet of square-ruled paper a “race track” is drawn, with a
“starting line” along one of the lines of the ruling (wide enough to ac-
commodate all starting cars: typically 2 to 4) and a “finish line” at the end
(see the drawing on page 72). Several curves should be included in.the
track to add interest to the game, and a new and different track may be
drawn for each game. Each player uses a pen or a pencil of a different
color to mark the position of his or her car, ‘which must always be located
on one of the intersections of the ruling. -

_ All cars begin at the starting line, and players then take turns (in an
order determined by the toss ofacoinorina similar way) advancing them
according to rules described below. With every advance of a car, its new
position is marked on the sheet in the appropriate color and is then con-
nected by a straight line of the same color to its previous position. As in
real car racing, the first player to cross the finish line wins. '

To explain the rules by which the cars advance it is best to imagine
a system of (x,y) coordinates covering the sheet, with one unit of length
along each of the axes corresponding to the width of one square (see the
drawing). In each “step” of the game, each coordinate (x and y) changes
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wrecked.”. The game seems to have been invented in Europe, from where -
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‘by a whole number which may be positive (indicating an increase), zero
(indicating no change), or negative (indicating a decrease).

The change in x allowed by the rules, in a given step, always de-
pends on the change in x during the preceding step: it may either be the
same, or larger by 1, or smaller by 1. For instance, if the previous change
n x was +2 (meaning the car moved 2 units to the right), the next must
be either +2, or +3, or +1 (moving 1, 2, or 3 units to the right). A similar
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rule holds for the change in y. For the first step (off the starting line) one
assumes that the “previous step” involved no change in either x or y, and
therefore the first change in either x or y must be either zero, or +1, or

—1.

All the steps of the game drawn here follow these rules, as you may
check for yourself. :

Additional rules must also be followed. Neither the marked points
nor any parts of the straight lines connecting them are allowed to leave
the race track, and any player whose car crosses the boundary loses. Also,
no two cars may occupy the same spot at the same time (that would be a
collision!), although their tracks may cross and a car may be placed at a
point where another car had been earlier.

If the first car to cross the finish line does so after, say, 24 steps, it is
only fair to allow any car that has only completed 23 steps to take one
more turn, so that all cars will have completed the same number of
moves. After that, if two or more cars have passed the finish line, the car
that has gone the greatest distance past the line is the winner.

A short sample “race” is shown in the drawing, with the positions
of the two competing cars labeled by the numbers of the steps in which
they were reached. At first, the car marked by the heavy black dots pulls
ahead, but it overshoots the second curve and winds up losing the race.

Go-Moku

Go-Moku (variously translated as “five stones,” “five squares,” or
“five ‘eyes’”) is a Japanese game for two players: A version called “Take
5” (using plastic pegs) has recently appeared in American toy stores. The
original version of the game uses the same equipment as is used in the
Japanese game of Go—a square-ruled board, usually 18 squares in length
and width, and a supply of black and white counters (marker stones). In
both Go and Go-Moku, players take turns placing counters (one ata time)
on intersections at which lines of the ruling cross each other—that is, not
inside the cells but at their corners (the longest horizontal row or vertical
column can thus contain 19 counters). One player uses the black coun-
ters and the other the white ones, and once a counter is placed it cannot )
be moved again. In order to win in Go-Moku a player must place 5 coun-
ters in an unbroken line—vertically, horizontally, or diagonally.

The game is easily adapted to square-ruled paper. Instead of placing
black and white counters on a board, the players draw on the board full ()
and open (o) circles, or better still, circles and crosses as in tic-tac-toe. It
is also more convenient to put the marks in the centers of cells instead of
putting them in corners: this does not change anything essential about
the game, except that the Go “board” now ought to measure 19 by 19
cells. However, players often omit boundaries altogether and play with no
limits on the available area. In any case, they take turns in making the

‘opening move. :
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As was noted, the winner is the player who first establishes a con-
tinuous line of five marks, containing no empty spaces and no marks
belonging to the opponent. Obviously, when a player has built up a line of,
say, three marks, the opponent may place a mark at one end of this line to
prevent it from growing at that end. A player who has established a line of
four marks with “open” ends—no enemy mark at either end—is usually
assured of victory: if the opponent cannot win in the next move, the best
he can do is block one end of the line-of-four (see the illustration), which

does not prevent the first player from winning by placing a mark at the
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Black makes a White tries to block. Black wins.

winning move.

The placing of a single mark that completes two lines-of-three,
each with open ends, also brings victory in most cases (see drawing). If
one developing line is blocked by the opponent, the other line can still be
extended to a length of four and—unless the line is now blocked or the
opponent can immediately win—there is no way of preventing its exten-
sion to five at the following turn.

White assures victory i o
by completing two ole
lines-of-three. STel®lo
‘ (OBN BN .:
o}
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The related game of Go can also be played by marking the intersec-
tions (or the cells) on square-ruled paper: the object of the game, how-
ever, is not the establishment of a line-of-five but the surrounding of
areas occupied by counters (or marks) of the opponent. It is a much more
difficult game than Go-Moku and it contains many long-range traps and
tactics, requiring careful planning of the game many moves ahead. In
Japan, Go occupies a place similar to that of chess in Western society and
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there are nine recognized levels of expert Go players. Because of the
complexity of Go, it will not be discussed here (you might find more about
it from books devoted to games). Go-Moku, on the other hand, is a popular
game, widely played by children and adults—often on square-ruled paper,
in a manner similar to the one described here.




A “random motion” is one in which the direction keeps changing
unpredictably. A kitten lost in a large open field will wander here and
there, in directions which seem to be determined mostly by pure chance.
A fish in the ocean, likewise, will often move ‘“randomly”’—without any
preferred direction, as if every new move was decided by a “toss of the
dice.”

We can easily imitate such a “random walk” with the help of
square-ruled paper, a pencil, and a coin. To make things simple, let us
first look at a random walk along a line. The line will be the x axis,
suitably marked
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and we start out—naturally—from the origin (x = 0).

‘ We now toss the coin: if it falls “heads” then x is increased by 1, if
“tails” it is decreased by 1. The numbers one gets for x as the coin is
thrown again and again give the position of a point randomly “walking”
along the x axis: if you wish, you can note the changing position of this
point by a pencil mark or a snippet of paper. Here are some ‘“random
walks” obtained in this way, each containing 16 “steps”:

s
%

0,-1,0,1,2,1,2,3,2,1,0,-1,0, -1, -2, -1, -2
0,1,0,1,2,3,2,3,2,1,2,3,2,3,4,5,6
0,1,2,1,0,1,2,1,0,-1,0,1,0,-1,0, 1, 0

As can be seen, the progress of the point along the axis is com-
pletely unpredictable, and it is equally likely that x ends up positive or
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" negative. In the last “walk” the point even returns to the origin, although
this does not seem to happen very often.

’ After a certain number of steps, how far from the origin, on the
average, does such a “random walk” extend? It will be seen that the
result depends (partly) on the way in which we choose to define and

" calculate this “average”; and to make matters simple we will concentrate

on random walks which have exactly 4 steps each.

At each step—each toss of the coin—there exist two choices for the

change of x: either +1 or —1. This allows us to represent eac

h completed
4-step random walk by a row of plus signs and/or minus signs. For in-
stance,

neEne

would represent a walk in which the first 3 steps were equal to +1 while
the last one was —1. Using this notation, one

finds that there exist exactly
16 different random walks of 4 steps each, all of which are listed in the

table that follows. For convenience, all walks which give the same total
change in x are grouped together. This change is denoted by X and can be

positive, negative, or zero (if we imagine the walk starting from x = 0,

then X is simply the final value of x).
In addition, the dable lists the “total distance covered”: the distance

between the starting point and the end point of the walk. In everyday
conversation, when we speak about “distance’ we always mean some-
thing positive (or just possibly, equal to zero), and the distances given in
the table indeed follow this rule.

Table of Four-S tep Random Walks on a Line

X, the total The steps of the IX|, the total
change in x random walk distance covered X2 -
+4 | +4++ 4 16
—+++ )
+2. +—++ 2 4
-+
+++—
——++
—+—+ .
0 -4+ - 0 0
’ +4+——
e
S —— ¢
- _
-2 —t—— 2 4
———

-4 _——




You will see, if you check, that among the 16 walks listed, 8 have
+1 as their first step and 8 have —1, and that the same equality also holds
for any other step. It is also clear that X is equally likely to tumn out
positive or negative. ' :

would occur in very nearly 1/16 of the walks, the same proportion we get
in the table by listing every case exactly once. So let’s look at this set of
16 walks—in which each kind appears just once—and see how they be-
have “on the average”; this should be similar to the way a very large
number of walks (selected not from a table but by pure chance) would
behave.

: The “ordinary average” or “mean” of X—denoted by pointed brack-
" ets, thus: (X)—is the sum of the values of X from all walks; divided by
the total number of walks being eéxamined, namely 16:

I

(X)

%[(4>< DI@xD+0x6)+(-2x9+(-ax1)] =0

The result is zero, as expected, since X is equally distributed on the
bositive side and the negative side of the origin (x = 0). ,

We might also want to know, however, how far from the origin the
average walk extends, and one way of achieving this is by using absolute
values. The absolute value [X ] of a number X is Jjust the positive number
one gets after lopping off the sign. For instance, o

2] = 2, and
, 2= 2.

In our table, |X ] represents the total distance cavered by the.random
walk, regardless of direction. Since ]X ] is either positive or Zero, its aver-
age will be a positive number. Can you calculate it? The calculation is
very similar to that of (X), and you may compare your result to the an.
Swer on page 81. . :

There exists still another way of estimating the total distance cov-
ered by the random walk—by calculating the average of X2, which like
IX| is always positive: '

2 = 29x9 -4 and
(=2¢=(-2) x (-2) =4, (“Minus times minus gives plus.”)

I

Averaging over the 16 cases listed in the table, we find that for our
4-step random walk the “average square of the distance covered” is

<X2>=1%[<16><1)+(4><4)+<0><6)+<4><4)+<16><1)]=16_‘61='4_
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The square root of this should measure some sort of “average distance
covered,” and it amounts to

V(X)) =Va="2
This is often written
<X>rms = 2a

where “rms” stands for “root mean square,” the mathematical name for
this type of average. It does not equal the average (|X |) described earlier,
which confirms that different ways of defining and calculating “aver-
ages” do indeed lead to different results.

Which of these two averages is more useful? It turms out that the
r.m.s. average is more easily generalized for any number of steps, of any
size (provided all steps are still of equal size). If the random walk contains
N such steps, we find ;

(X?) = N x (size of step)?.
(Could you check this for N = 1?) And from this we get
‘ (X)ms = VN X (size of step).

, For example, if each step equals either +3 or —3 and 100 steps are
taken, then according to the formula the random walk will on the average
(the r.m.s. average!) take us 30 units away from where we started.

A random Waﬁ{ which covers an area_(like the walk of the lost
kitten) is easily drawn on square-ruled paper with the help of a set of (x,y)
coordinate axes. As before, you start out at the origin, but now at each
-step you throw two coins—say, a dime to give the change in x and a
penny to give the change in y. One such random walk, containing 49
steps of equal length, is shown here: because only 4 directions are avail-
able, the walk will often retrace itself and may even go around closed
loops. :

4

Y
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Each step in this walk advances us diagonally across one of the
squares of the ruled paper, and its length is therefore always V2 (see
chapter 7). However, the formula for ther.m.s. average distance between
the starting point and the end point, after N steps, still remains

_(X}ms =VN x (size of step) = VN x /3.

This distance will not be, in general, along one of the main axes—in
the diagram of the 49-step walk, if the origin 0 is viewed as the centerof g

i
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You can trace a random walk faster if you throw several pairs of
coins at the same time: in the drawing of the second random walk shown

effect of 4 “ordinary” steps—which means, if you think it over, that each
change of x or of Y is now the result of one of the 4-step random walks
listed in our table and can equal 4, 2, 0, —2 or —4. Therefore there are
more possible directions for the walk, and the steps also may differ in
size, making it less likely for the walk to retrace itself (although it does
happen here, just before the end).

There are 25 steps altogether, including 5 “invisible” ones in which
the change in both x and y turns out to be zero. As noted, each step is
equal to four “ordinary” steps, like those of the 49-step walk: instead of
tossing 4 pennies and 4 dimes all at once, we could start by tossing the
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the "2:24- - first dime and the first penny to get the first “ordinary” step, then repeat
see . with a second pair of coins, then with a third and a fourth. Thus the 25
een - ~ “Jarge” steps represent 100 “‘ordinary” ones, and according to the formula

" the average r.m.s. distance covered in 100 such steps is

(X)ims = VIO X V2 = 10 x V2,

—in or about 14. Measure for yourself how close this predicted average comes
ofa to the actual distance covered by the random walk!

d 4 Finally we take a quick look at random walks in three dimensions.
Sto Air and other gases consist of tiny bits of matter, called molecules, which
t of- fly through space and collide with each other many thousand times each
P second. Each time a molecule collides, the direction in which it moves

changes unpredictably, so that it moves in a kind of three-dimensional
random walk. The steps in this “walk’ do not have equal sizes, because

_ after any collision one can never tell how fara molecule will move before

it collides again.
When perfume is left in an open bottle, some of its molecules mix
with the surrounding air and perform similar “random walks”: each col-

 lision with an air molecule launches the perfume molecule into a new

and unpredictable direction. After many bounces, a few such molecules
may even reach our noskes, where their presence is noted. One says that
molecules of perfume diffuse through the air (in addition, air currents
help in spreading them around).

Our factories are the source of many kinds of molecules which

diffuse through the Earth’s atmosphere and which affect the environ-
_ ment in which we live. Of special interest are molecules belonging to a
. family of gases known as “Freons,” which are used in refmgerators air

conditioners, and certain kinds of spray cans. Freon molectles do not
break up easily: one of the few things that can tear them apart is ultravio-

- let light, a “color” of light not visible to the eye (though it does affect

photographic film). About 1/100 of the Sun’s light output is of this kind;
but luckily for us most of it is blocked by a layer containing a small

of amount of ozone—a special form of the oxygen we breathe—which is

i produced high in the atmosphere and is mostly found at heights between

;1; ' 6 and 20 miles. Very little of the Sun’s ultraviolet light manages to get

ch
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through the ozone layer and to reach us;
ultraviolet light strongly tans and ev
unhealthy to the eves,

The trouble is that the ozone layer acts as a shield not only !
but also for the millions of tons of Freon which escape every vear from
broken air conditioners or from spray cans. The released Freon molecules
diffuse randomly through the atmosphere and nothing much happens -
them unless they happen to reach ahove the ozone layer, into the regi
where the Sun’s ultraviolet lLight can break them apart. Unfortunat
when this happens, one of the fragments is the gas chlorine which':
stroys ozome guite efficiently. If too much ozone gets destroved in
way, an unhealthy amount of ultraviolet light will be able to reach
ground.. : b Teett L : RN
~ . It takes on the average about 20 yvears of randem-walking before.
Freon moelecule wanders to where sunlight can destroy it, so gases whi:
are released today may cause their damage only far in the future. Sy
many people have become concerned about the possibility of such dam
age, and the U.S. government has accordingly banned the use of Freon ]
most kinds of spray cans, :

and that’s a good thing, becauss
en burns the skin, and is in additicn




ies of Points

Interesting things are seen when one collects “families™ of points
for which the values of the % cotrdinate and the y coordinate are in some
ay relateﬁ. Take for \ tance the points for which x equals y. These

T*‘ﬁ's straight lne also passes the origin (0,0)—and there, too, x
equals v, both of them being zero. It also passes such points as

(=1,-1),(-2,~-2), (-3,-3)
and even

(Yo, 45), (21%,214), (—3te,—314).
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thelineof y = x.”

.. Similarly, “the lineof y = 9. 2 includes all points for which v is
twice as big as x. In order not to confuse x with the multiplication mark
‘we will from now on denote multiplication with a dot, as mathematic
often do. To aveid confusion with the decimal point, a little extra spac
left in front of the multiplication dot and behind it, and it is sometim
lifted slightly above the line: Computer programmers go even furthe
towards making the multiplication symbol distinctive and unique b
using the asterisk—that is, “two times three” is written
which perhaps deserves to be adopted by schools.
Coming back to our families of points: the line of

2 * 3—a practic

N A

(}“2}, :‘?«ﬁijr (3<6}~ s ey (_1 -2, (_“:?“—4}

N
Again, the origin (0,0} also belongs to the family since for it, too, y is
equal to twice x. Because the line happens to be straight, we cnly have to
find two points on it: once these are marked we can use a ruler to drav

the line itself. Here is how the line will appear:
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The line y = J :; is éraxi’n in much the same tx?év—uqinv for
stance, the points (1,3) and (— 1,-3) or (3,9) as guide marks for the

mulﬁpi}’}ﬁa numbers by 3 Sm(‘E the value

w**"s 3 umes *‘w x

marks mu}ﬁ;;hcamon remember N we
ok for the point on the line which has
. 4 (see drawing). The value of y for
this point is 12, and this indeed equals 4

Another straight line includes points
th x and y related by
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It includes points such as

(0.03, (1,1%)

p (\:—2) 1)? (3\ 11/&}} <4‘:’2}’ )

AR

The line

has this form:

are 1rse many other lines (infinitely many, inde
- be drawn in this way: you may experiment, if vou wish, wi

i

5

are straight and may therefore be drawn with a ruler as soon as
two points on them have been marked. Be warned, however, not to place
these points too i{;}sg 0 each other—otherwise, if the line misses one of
th en a small amount, the resulting error is quite noticeable




Not all families of points give strazght lines. Take for instance the
points with

&

§E y = x.

It helps things if, before maﬁm:wr points on paper, one first draws
- up a list of values af x and y that be}m}g o each other. Let x be chosen
from the lowest whole numbers: 0, 1, 2, 3, and so forth. The values of y
are then the squares of these numbers, 50 we get:

If x is 0 | 1 2 | 3 4 5
then y is 0 1 471 9 18 | 25
Ifyeu are fazmhaz wﬁh the rule “minus dmes minus equsa,s plus,”
you can at ence add to the table points with negative x. For instance, if
= —3, then {remember, dot means mulnphcauvn)
y = (=3¥
=(-3)- (-3) =
One therefore gets:
If x is -1 (-2 -3 -4 | -5
then y is _ 1 4 g | 18 | 25
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Drawing all these points and connecting them smoothly gives a cury
called a parabola.

£y

If d:raxm conacdw‘, the parabola wa;i pass not only through the liste
points but also thraugh all m—bem*ﬁﬂn points for which y = 2. For in
stance,

15 suaha ] c;mt

érs b‘x ; means of 10110* {:a}ales theya
form the bottcm of a pambc}a (Please note, howev er, that
~1f the cabie twere to be left hanging alone, without carrving a Z‘Oad way, its
shape would be slightly different.)

-;
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, A stone thrown upward at an angle moves along an upside-down
parabola. So does a cannon shell or a baseball—more or less: the curve
may differ slightly from an exact parabola, because the air resistance that

slows down the motion also slightly changes the shape of the curve.

\
N

T 777777777 f'////;"’//;/'//};ﬁ‘?

The shapes of the orbits of many comets that arrive near the sun
from deep spdce are also very similar to parabolas. Since a parabola is
open at its ends, we can assume that such comets make only one pass at
the sun and never come back:

Ti

Cai
algn.
T Frem s,
%f':az comells orbit . \~ ' or‘b.”i
very nam'i:; a 3‘; ca
i €arth

parabola

The curves representing relations such as

y:?.xﬁ
y =% 2

are also parabolas, but of narrower or wider shape than the one we drew

earlier.
How about deriving a family of points from triangular numbers?

Suppose x and y are related through

y =2,




That is, y is to be the x-th triangular number {x obviously must be a
whole number). As before we begin by drawing up a list:

Ifxis | 112 (31| 4|5 6| 7
thenyis | 1 |3 |6 |10|15]|21 |28

P i

I vou mark the points in (x,y) coordinates and connect them witha
smooth curve vou will get just about halfa parabola. In fact, the points all
belong to the curve

=15 . x.

which is a parabola. This should not come as a surprise, since the for-
mula for triangular numbers is

Ay=1- N- (N+1).

+ Therefore, dn the relation which defines the curve (and we are
going to discuss many other such relations in the next chapter), when-
25 e whele number N, then the curve’s equation is the

but with a shift downwards and to the left: the pambola y =% - x* (like
the one first drawn) “hits bottom” af the origin, but the other curve bot-
toms out at (—14,~14). By drawing y = 1% - x - (x+1) on one sheet of
paperand y = ¥4 - x° on the other, holding both sheets together against a
bright light, and then sliding one sheet over the other until the curves
overlap, you can convince vourself that they do indeed have the same
shape. '




Graphs

So far cosrdmat&s have benn used for pmducmﬂ two Lmds of lines.
The simplest relations, snch as

k2
I

Y

ﬂ‘ave si‘ng}zt lmes Whﬁe

Y= 2 ex®

gave parabolas. More generally, it may be shown that if ¢, b, and ¢ are
any given numbers, all rélations of the form

y={(a-x)+b

give straight lines (for this reason these are called linear relationships
between x and ), while those of the f{)rm

={a-xy+(b-x)+c

gn’e pamboias. hﬁwes er, there exists no Hmit to the numbe* of differ e,pf
curves that can be drawn by this method One can invent many different
rules connecting x and y, and each rule (or “equation”™) has its ¢
family of points. Look at these, for instance: '

1




The points described by such mles can generally be connected by smoo
curves of various shapes. Some of the curves wiggle and snake up 2
down. One of the rules listed here, though, gives a parabola: can vo
guess which one? If you turn to page 84, you can check your guess
against the solution. :
Lines of the type discussed here are called graphs: a larce part
mathematics has to do with graphs, and scientists in all fields use th
frequently. Square-ruled graph paper which is finely divided into smal

squares—such as the paper with sguares one millimeter apart shoy
chapter 1€—is particularly useful for this purpose. Nowadays it
fashionable to talk casually about millions or even billions of people, d
Iars, and so forth, Graph paper with squares one millimeter wide can
make us realize how ig a million actually is: over 20 page-size shee :
itare required for presenting a total of one million squares. To display
million squares with the graph paper used in most of this book, about 50
pages would be needed!

By the way, you may have noted that in all the examples given
far, the complitated part of the rule involved x. It is the custom in math-
ematics todeave y.a one as much as possible. Sometimes this rule must
be broken, an end of this chapter an example will be given in
which it is more cos nient not to set i apart. :

o+ Justag thers exisis a special name—"graph”—for the Iine that
nects points of a given family, so there also exists a special name for i

miev re}aiﬁﬁg Y and x in any such family of points. If such a rule exisi:{
mathematicians say that “y is a £ ction of x” (one could equally

saythat x isa fun of y, but we have already noted that by traditon
is the guantity u ually isolated). For example, in any of the elationship
shown earlier in this section, y is some function of x.

There exist two kinds of graphs (and of functions).

The kind we have been dealing with thus far are graphs in which

the relation between x and ¥ is purely mathematical. Examples:

The other kind includes graphs that describe relations that are no
calculated but measured. For instance, x could be the time in vears
cotmted on the calendar, while y would be the number of people living at
that time in'the United States. Let us take a closer look at this particular
example.

By the law of the Constitution all people in the U.S. are counte
every 10 years (this is called a census). Listed below are the results of
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United Siates in mil-
ons, rounded off to the nearest million:

1810 | 1820 | 1830 | 1840 | 1850 | 1860 |1870 | 1880 | 1890
7 10 13 | 17 | 23 31 38 50 863

It is guite easyv.io dxaw
t it to fit the page (one price paid for this adjustment
is that the origin is no longer inchaded in the graph). We choose svery
square in the x direction to represent 5 years while every square in the y
direction stands for 10 million people. Drawing the graph itself might
require a certain amount of “reading between the lines”: to mark 7 mil-
lions, for instance, ? '

the width of a square. ‘

In this manner we get the following graph:

a graph of this relation between x and y if

e must guess or measure a distance which is 7/10 of

N

Ll
N

T’.E £ Awing 8TE

_laghe | who! | {wmo| b | 1240 | o | | iwsal i jwsod




One immediately sees that the growth started slowly and becam
faster as time went on. This is easily understood—more children are born
in a nation of some 200 million people—as we were around 1970—than in
& nation of one-fifth this size, as we were a hundred vears earlier. Yet thi
is not the complete story—the U.S. also grew in size during those vea
as new states joined the union, and many of the added people were
born hers but ardved from other countries. In the 1930s, conditions ¢
Life in the United States became relatively hard (“The Great Depr
sion™). This cansed a decrease in the birth rate-"the average numbe
children born each vear, for every 1000 people—and at the sams time 1
number of new arrivals dropped sharply, as a result of new immigra
laws and the difficulty of finding work in the U.S. Indeed, the gr go!
shows that the rate of growth was noticeably smaller during those vesr
_~~ Population is counted évery 10 years, but with a graphone can al
guess rather accurately how many peogle thers were in the in-he
years. To find the U.S. population in 1875 (for instance) we draw a
cal line at & = 1875 and mark the point at which it hits the curve {se
drawing!). The value of y at this point then approximately gives the popu

ition in 1875, Such “reading bétween the points™ is called interpol
" Mor , we can also try and continue the graph into th
ire {(brokes 1 the drawing) and thus make a guess at how larg
r 20 years. Such “reading past the end of the

Among the rules listed, the third one implies that x = y*. It there-
represents the same relationship as the one which gave the parabola -
in the preceding section, except that the roles of x and ¥ are now
: e of this exchange, the parabola is “lying on its
e"—but otherwise its shape is exacily the same.
. Note that, with this rule, for every a there exist two possible
oices of y: For x = 4, for instance, y equals V4 or “the number the
square of which equals 4, which can be either 2 or —2. Cases like this
one, in which more than one correct answer exists, are offen i
mathematics,




i
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~graph” (extrapolation) assumes that things will continue in the future
the way they have been in the past: for predicting the future a short way

ahead it works well, but trusting it too far past the last measured point
 can guickly bring large errors.

Mark Twain, in Life on the Mississippi, poked fun at “scientific
people” who extended their observations too far past their last point, or
ahead of the first one; and he proposed some rather wild extrapolations of
the length of the Mississippi river That river, along much of its length,
winds left and right in big curves, making it appear {as Twain put it) as
“the crockedest river in the world.” Such windings of the river (along the
eastern edge of Arkansas, for instance) mayv make it twice as long as it
would have been if it followed a straight line.

Now and then, after a flood, the river is found to have shortened
itself by taking a shortcut across one of its curves. Twain claimed that
over the 176 years preceding his own time the river had shorténed itself,
on the average, by more than a mile per year. He then extrapolated this
trend to ridiculous extremes—io the far future, when (if the same rate
continued) the river’s length would shrink to nearly nothing, and to the
distant past, ahead of the beginning of the graph, when the river's length,
assumed to increase by about one mile with every additional year one
went back in time, was far to big to fit the surface of the earth:

Now, if I wanted to be one of those scientific people, and “let on” o Prov
what had cecurred In thé remote past by what had occurred in a given time
in the recent past, or what will occur in the far future by what has occurred
in late vears, what an opportumity is there! . . . Please observe: :

Imthe space of one hundred and seven’ vears the Lower Missis-
sippi has shortened itself two-hundred and forty-two miles. That is an aver-
age of a trifié over a mile and a third per year. Therefore, any calm persoxn,
who is not blind or idiotic; can see that in'thé old Oclitic Silurian Period, just
4 million veats ago next November, the Lower Mississippi River was up-
ward of one million three hundred thonsand miles long; and stuck out over
the Gulf of Mexico like a fishing rod. And by the same token apy person can

s that seven hundred and forty-two years from now the Lower Mississippl
will be only a mile and three-quarters long, d Cairo and New Orleans will

have joined their streets together, and ‘will be plodding comfortably along
under a single mayor. . . . There is something fascinating about science.
One gets such wholesale returns of conjecture out of such a trifling invest-
ment infact. ‘

Back now to the graph, which could be called “a graph of U.5.
population against time.” Other measured relationships may also be ex-
pressed in graphs—the graph of the distance y needed to stop a cart,
against the speed x at which the car travels (if you used the formula
given in chapter 5 for this relationship, by the way, you would end up
with a parabola), or of the average height or weight of a person against s
or her age, and s¢ on.

In all cases a graph provides at a glance many details abouit the
relationship it describes. A look at the parabola y = x*, for instance, im-
mediately shows which x has the smallest y connected with it—this
happens at the crigin, where the curve hits its lowest point.
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Scientists working with computers often make them give the re W
sults of calculations by means of graphs, for they can then see easily and’
quickly what these results mean. Usually a computer prints out its re
sults by means of an electric typewriter which can pmdﬁce not onlyv leve
dashes (ike —) but also vertical ones {(like iiit ). This enables th
machine to print out both axes, as well as the nambe:cs labeling them an
the points of the graph; Wihc:h are mar}\ed bv an X or some similar sym
ﬁ_lﬁus&mt&o“ R

X
X
”
X
At S S SR S
3 4 5 86 7 8

This is 10! cmmpletel’v saquacton'

_ because a Wpewnter can move
szd an W g Al ‘

‘ ’ s ther st spema} v'rrmng
a2 pen ;_hlch m ves a - a sheet of paper: by
mﬁazas ,,Qf puﬁeys an .mators the camputer can mo E the pen all over the
quite complicated daes” ev
' te 1abe1 the gra h‘

» - r'ie :he
,re«cen- ers and &er a.re edsa Wavs chap‘smv zt ona

she t of: spemal papaz: 5
© The word graph, by ‘t:hﬁ way, comes fmm a GreeL word maanmg

“to write.” Indeed, a graph is a way of “writing down” the relationship
betweeﬁ chazwm quammes

graphate
= %mensvan inventor and pamier Samuel M@rse intro-

duced a machine that could write down signals sent to it electrically. He
named it telegraph—the machine that writes (a message) ata distance
(tele is “far™ in Greek“? Just as graph means writing, gram means that



vhich is written, so telegram is the message sent by telegraph, and
srammar is the study of rules to be follow ed when writing. ER
To conclude this chapter, here is a problem:

Can You Draw This Graph?
Suppose that x and y are related by the condition

y? + x* = 25.

In this case it is more convenient to leave the condition in its original
form rather than try to separate y to “stand by itself” What is then the
shape of the graph passing through aIi points at which the above relation
between x and y holds true?

To help you out, here is a table of some points belonging to the

graph:

If x is ﬂ ol3| 3|4 4|5| 0/-3-8|-4|-4]-5
‘ 4|-413]-3 |0 ||-5] 4|-4] 3-3| 0

Ut

then y is

Note that for every x there may exist two points on the graph (Just
as we found in the “sideways parabela” o'P the preceding problem): for
instance, for x = 3 we may have eithery =4 ory = —& Because of the
multiplication rule “minus tzmes minus equais plus,” both values have
the same square: car 11 : :

it

. 44 o
(4 = (-4) - (-4) = 18.

Therefore in both cases the condition of the graph is fulfilled: that is,

I

i
il

3'-"%3;5':‘75/

Try to draw the graph, and then compare vour result with t}}e answer on
page 100—but don’t 190}\ before you have med?




Let us examine two “roof-shaped™ triangles, each of them three

e

The triangle on the left 18 steep: it would be hard to climb a roof of
such a shape w out slipping. The one-on the rightis less steep and hasa
much m, re “climbable” shape, . :

Hx:;wd@és; One measure steepness? .

As one climbs the side of the steep triangle with every unit that

nces to the d i ) rises one unit. Going from
at the same time one also

P triangle, one only rises half

a unit for every umit advanced horizontally. v

oIt is customary to say that the firgt triangle has a slope of 1, the
second a slope of 1%, More generally, the slope of 2 slanting straight line is
the number of units by which the lne rises for every unit advanced hori-
zontally. The word “unit™ here mav mean any unit of length, be it the
length of 5 Square on our ruled sheet of baper or be it an inch, .
meter: no matter which units are used, the slope of g given line is always
the same.
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The slope provides an accurate way of measuring steepness: the
larger it is, the steeper is the line. Some examples are drawn below:

H ] i 5 L
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There is a czmple rule f@x calcuiatm slopes: if we rise A units
while advancing B units imnmﬁtailv the slope equals the fraction A/B.
For instance, the side of a triangle which rises 2 units while advancing 5
units hasa slope equa& to ”’*a {two ﬁfths)
.«—*’FL
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Driving a car on a steep road demaﬂds extra carp——esgecmﬁv when
you are dnxmcr downhill, for the slope then makes it difficult to stop the
car quickly. In the Umtﬁd States, steep stretches of road usually begin
with vellow warning signs bearmcf messages such as C*QTIO?«——QTE:‘.‘EP
ROAD AHEAD or often simply 5L L.

In most of the world there is a different system of traffic signs,
using pictures instead of words—perhaps because often not all the drzv
ers on a road speak the same language. Warning signs, in particular, are
triangle-shaped with red borders and contain a picture which ex xplains
their pur;e,ase, For instance, there are signs warning of sharp curves
c:.m:au O}' of railroad CLO’\:}JI‘A‘;LD,




The mammg sign for a steep road show
es also tells what the grade of the road is.

o

$ a rising slope, and some-

“Can You Draw This Graph?” {page 97):

The graphis a circle, 10 unifs wide and centered on the origin,




Here the parts are rearranged to make a rectangle 13 units long and 5
units high:

T

But is this really possible? The rectangle hasanareaof 13- 5 = 65
cells, while the area of the square is only 8 - 8 = 64. If the same pieces
were used for both, where did the extra cell come from?




Before you start vour search, here is a hint: this puzzle has to do
with slopes. You will need the formula for slopes that are given by frac- !
tions, examples of ‘which were given earlier. For Instance, if a line rises 3
units while advancing 8, its slope is given by the fraction 3/8. '

(The full solution begins on page 104.)




The Steepness of a Curved Line

[
»

' v
As the last stop on our mathematical trip, we will briefly discuss
the steepness of a curvediljne. Unlike the steepness of a straight line, it
usually changes from one point to another. Suppose this is the picture of a
hill:

Near the bottom the hill is not very steep; but as one climbs, the ground
grows steeper and steeper, until at the point marked A it has considerable
slope. Then as one climbs still farther the steepness eases off again, and
at the very top the hill seems quite level and one senses no slope at all.

‘Now suppose that the above drawing is not a hill but a curved line
drawn on a sheet of paper—which, after all, is closer to the truth. Then all
that was said about the slope of the hill at various points also holds true
for the slope of the curve. The steepness of other curves is handled in
much the same way: if the curve is a graph drawn in (x,y) coordinates,
then the x axis is usually regarded as “level ground” and all slopes are
compared to its direction.

103




Solution

The Puzzle of the Extra Cell:

If you cannot see anything wrong, you have been tricked. The
pieces of the 8-by-8 square, with a total area of 64, only seem to make up
arectangle of 13 by 5units. Actually they do not &t tozether completely in
the way drawn. . .

Take the line through the 3 points labeled A, B, and C below: if the
pieces all fit exactly into the rectangle, it should be a straight line.

the slopes of its two parts. A straight
ine AB” or just “AB,” for short) rises
e advan > Slope 1s 3/8. The line from B to C (the
C™) rises 2 units while advancing 5, so its slope is 2/5. We may
‘multiply the top and bottom of a fraction by the same member (5

oy

~-or 8 in this case) so:

Slope of AB

Slope of BC =

—-—».—g.?}-

The slope of BC is larger—which means that BC is steeper than AR and

that the combined line really looks something like the way it is drawn
below (we exaggerate the two slopes to make it more clearly visible):
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The two pieces along tha top s:zﬁe of the rectangle also have different
slopes, and the way e*s‘*erythiﬂ' : reai?zg fits into the 13-by-5 area is shown
below (again exagderated”} ' :

f th square do not wmpleteh cover the rectangle but
; glit in the middle, and that is where the extra area
actually a very narrow slit, w hich explains why it was

:m;} your friends with this puzzle by cutting out an
and dividing it into four pieces which can be rearrang ged (or
o a 13-by-5 rectang ¢le. If you are deliberately careless in
cutting out the pieces so that their sides are not completely straight, no
one is h&ely to notice tha* they reaﬁv do noz: quite fit together.

To get a clearer r idea of what is meant by “the slope of a curve ne
some point P on it,” one draws through. P 4 straight line which foﬂcws
the dlrecnan of the curve near P: : :

/

This line is called the tangent to the curve at the point P. Because
the tangent has the same direction as the curve near P, it also has the
same slope as the curve has there. While it is difficult to measure the
slope of the curve at P, it is rather easy to measure the slope of the
tangent, since it is a straight line. Therefore we can easily find the slope
of the curve at P—if only we can draw a tangent there!
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Unfortunately, this is not so simple. If you try drawing a tangent to
a smooth curve vou quickly find that it is rather hard to decide {even if
you have a transparent ruler) which is the exact direction of the curve at
some given point P on it :

 As an aid in drawing tangents, engineers sometimes use a small
rectangle-shaped mirror, F irst, place the drawing of the curve on a table
and stand up the mirror vertically at the point at which the tangent is to
be drawn—the point marked P in the picture shown here:
vefisct ion of

o 4 TuTvR

imning it slightly around P in
til the reflection of the curve

tion oF the Gireve duann on
tois happens, draw a pencil
Aion the bottom of the mirror as araler. =~ f

the mirror is put away. With' o drafting triangle or a similar
ISty nt having a right-angle corner, a line is now drawn through P in
a direction perpendicular to the lne ‘marked earlier along the mirror. This
ine is the tangent: it is shown in the drawing below, and one can use a
ruler to continue it on both sides of P,

line drawn

alona
e

Thryor
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line drawn

alona
e

Thryor




Suppose V2 could be written as a fraction:

V2 =L
_ b
i . :

Let us add here the condition that ¢ and b are the smallest whole
numbers suitable for this purpose (2 must be larger then b, since V2 is
larger than 1). This condition is needed because any fraction can be writ-
ten in many different ways, obtained by multiplving top and bottom by
the same number; for instance 1% can be written

2 3 17 48631 . . .
I or & or 3 ﬁrexen—mg?ggg (using all ten digits),

but the form 14 is the one using the smallest numbers.

If the fraction a/b satisfies this condition it cannot happen that a
and b are both even, for if that were so, then smaller whole numbers m
and n would exist such that ‘

a=2xmand b =2 x n.

The fraction would then equal

a _@2xm_ m
b (2 xn) n

and the form m/n would express it in numbers smaller than g and b.

108




However, &® must be even. To show why this is unavoidable we
multiply the fraction by itself:

: g
. ){ _—

b

Then, using the rule for multiplying fractions (top by top, botiom by

bottom) gives s

Multiplication of both sides byb~ then shows théé a

S 3 _ equals twice the
whole number * and is therefore even:

is even, then  itself must also be even (if a were
ltiplication of two odd numbers and is also odd). A

3 i . e e e MY
therefore exist such that

=(2 X m) X (2% m)

2 x 2) x (m xm)

= 4 X m3.
We therefore get
- | 2 X B =4 x m,
Taking one half of each side of this equality gives

B =

£

But this means that »® is also even, and by the arguments just used,
b itself is then even too. This creates a problem: when we started we
assurmed that a and b were not both even, yet now we are forced to admit
that they are.

This problem can only avoided if we realize that there is something
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Al W%{f%"i’ﬂﬁ!i

basically wrong with the assumption that\'2 can be written asafraction.
Suppose that g and b are indeed both even: then, as shown before, the
fraction a/b can be represented in terms of smaller numbers m and 7.

V'S ¥

tol
I
Rk

However, the same arguments which have been applied to ¢ and b
M2y now be used to show that m and » themselves are also even: the
numbers m and » may then be replaced by numbers m’ and »’ half their
ize. This process can be repeated as many times as one pleases, each
time both parts of the fractions being replaced by whole numbers half as
large.

Clearly, no known fraction permits itself to be reduced infinitely
many times. The only remaining possibility is then that no fraction exists
which represents /3. A :

The proof given here was known to the ancient Greeks and may
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air resistance, 89
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Cartesian coordinates, 68
92

centimeter, 56-58

chain, 55

Charlemagne, 57

circle, (100)

computers, 16-17, 84, 5]
coordinates, 85-68, 71,79, 1
cubed numbers, 11, 37

census,

03

cubit, 53 )
curve, 71,73, 8§8-92, 89, 103,
105, 106

decimal fractions, 17,19,67,111
decimeter, 58,57
declination, 69

~ Descartes, René, 68
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diffusion, 81, 82

distance, T, 77, 78, 80, 93, 85
see also length, braking
distance '

Diirer, Albrecht, 44-46, (52)

Earth, 57,89,95

equations, 91

Euler, Leonhard, 16

even and odd, see odd and even
extrapolation, 95

families of points, 83-86, 87

foot, 51-53, 55-58

formulas, 2, 14-17, 32, 34, 35,
79-81, 102

fractions, 2, 19, 34, 37, 67, 102,
(104), 109-111

Franklin, Benjamin, vi, 46-47, 50

French (or France), 52, 57,70

Freon gas, 81,82

functions, $2, 107

furlong, 55
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games, 1,43, (46), 30— 63, 71-75
Gauss, Cari Fnﬂdnnh 32-33
Gs—ki{@ﬂa {game}, 73-75
gradient (or grade), 99
grammar, §7

graphs, 91-97,(100), 107
graph paper, 1,2, 92

graphite, 96

great circle, 57, 58, {(81)

Greek {ianguace 19,29, 57, 96
Greeks, 70,111

Guntgr, Edmund, 55

hand, 53
high:&fa}?‘sig:;s, 57, 89,100

illogical nambﬁrs 19
mf:h ? 51 56

Imear rﬁlafzonshap 91
log, (B1)
longitude, 6‘9,

maa"ic squares vi, 35-30
maps, 84, 65, 67-69
Mark Twain, 95
mean (av erage), 78
meter, 36-58, (617
metric system, 56-58
mile, 35-58, 95

see also nauncai mile
millimeter, 57, 92
mirror, . 106
Mississippi river, 05
molecules, 81
Morse, Samuel B., 98
multiplication symbol, 84
myriad, 12

nautical mile, 57, 58, (81)
New Orleans, 70

odd and even, 8§, (8), 34, 35, 46,
109-111

Old English (word), 19, 52

orbits, &9

ordinate, &3

origin, 67, 76-80, g3, 83

ounce, 32

ozone, 81-82

parabolas, 87-90, 91, 92,(84), 95,
97, 107
parallel, 55, 69

percent, 99
perpendicular,
pound, 52
powers of numbers, 11 1? 37
prime numbers, 9, (11}, 123 16
product, 8,9, 11, 26, 34-36
Pythagoras, 19 ( »
Pythagoreans, 19, 20, 29, 111

23, 25, 65, 67, 70

gquadrille, 1
guarter, 70

Race Track (game), 7 1-73

random walks, 76-82

ratio, 19

rational nhmbers 19-—‘38

rectangle, 7-10, 21 (24), 28, 31,
51, 55, 161 L104 IOD), 106

right r:’m..ie 23, 25

nw‘ht_\ascgnswn, 89

I.M.8., see root mean square

rod, 53, 55,57

Romans, 19, 52, 70

root mean square, 79

ruler, 54, 55, 84-88, 108

shoe, 35

Siam, 48

slope of a curve, 103, 105-107

slope of a ‘;malcrht line, 98-102,
(104-105)

span, 53

speed, 13-15, 57, (81), 71

speed Hmit, 57

spray cans, 81-82




35-60
spe magic

bers), 11-13, 186,

926 aaG4‘998

wmbers, 28-33, 37.
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ultraviolet light, 81,
units of length, 4,7,
55-38, 63, 99

82
8.18,51-33,

warning signs, 99, 100

wavelengths, :38

whole numbers, 1:>~1Q 32,
34-37, 67, 108-111

word derivations, 15-20, 33, 32,
53, 60, (61), 70, 986, 97

x axis, 65, 87,76
x coordinate, 635, 79, 80, 83,92
see also coordinates

vard, 53, 56, 58

-y axis. 63, 67

y coordinate, 65, 79, 80, 83, 62
see also coordinates
Yu (Chinese emperor), 43
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