The Sun is the brightest and most familiar object in the sky. Life on Earth would not be possible without it:
How sunlight is createdThe Sun has no sharply defined surface like that of the Earth, because it is too hot to be anything but gas. Rather, what appears to us as the surface is a layer in the Sun's atmosphere, the "photosphere" (sphere of light) which emits light ("radiates") because ot its high temperature.All hot substances radiate light, either the visible kind or beyond the rainbow spectrum, in the "infra red" (IR; "below red") and "ultra violet" (UV; "above violet") ranges. This glow [called "black body radiation" by physicists--the glow of a body with no color of its own] is the way a red-hot piece of iron or the filament in an electric light bulb produce light. The hotter the object, the brighter it shines, and the further away from red is its color. Conversely, the color of a hot object (if it is dense) tells us how hot it is. In the case of the Sun, the color of the photosphere suggests a temperature of 5780 degrees Kelvin (degrees Celsius measured from the absolute zero, about 5500° C.)
Because the ground is nowhere as hot as the Sun, its emission is also much weaker. However, at any location the ground sends out radiation in all directions in the half-sky that is visible, while receiving radiation only from the small solar disk, covering only a small circle in the sky, 0.5 degrees across. Because of this, the total energy any area receives should be equal to the total energy it returns back to space.
Think it over! If all of Earth's heat comes from the outside (neglecting internal heat), and if it maintains a steady temperature, no other way exists. Of course, only the average temperature is steady. Actually the ground is heated only in the daytime, but radiates back day and night, so nights, when energy only goes out and hardly any comes in, are cooler than days.
The second process is stronger, so the net effect is that like a blanket, the atmosphere helps keep Earth warmer than it would be otherwise. This is called the "greenhouse effect," because the same process operates in greenhouses used for growing vegetables in cold climates. A greenhouse is enclosed and roofed by glass panes, which let sunlight enter, but absorb the IR emitted back by the ground, and thus keep the greenhouse warm.
The chief absorbers of IR in the atmosphere are not nitrogen and oxygen, the main constituents of air, but a relatively minor percentage of "greenhouse gases" such as water vapor (H2O), carbon dioxide (CO2) and methane (CH4), which are strong absorbers of IR.
Another molecule, responsible for an important effect even though only a very small amount of it is present, is ozone, a variant of the oxygen molecule--O3 rather than the usual O2 produced at high altitudes, with its peak around 25 kilometers. It is also a greenhouse effect, but more important, it absorbs the Sun's ultra-violet (UV) light, which on can cause skin burns and hurt eyes. The ozone found near the ground and forming part of the urban air pollution comes from a completely different process.
The greenhouse effect helps keep Earth at temperatures comfortable for life, but that is a finely balanced situation. In the last half century, the burning of fossil fuels--coal and oil-- has steadily increased the atmospheric content of CO2. The average temperature of the Earth has also risen, and this rise is believed to be due to the added CO2.
Just below the boundary of the stratosphere ("tropopause"), air which has cooled is forced down again by warmer air rising from below. The result is a circulation of air, rising hot and returning cold, going around again and again, a motion known as convection. On a cold winter day such convection also occurs in homes: near poorly insulated windows the air cools and descends (as the flame of a candle will show--but careful with that fire!), while further inside the room it rises again. The region between the ground and the stratosphere where convection and weather take place is known as the troposphere. Sunlight also evaporates water--from the oceans, from lakes and rivers and from green plants. Energy is invested in turning liquid water into vapor, and therefore humid air has more energy stored in it than dry air. The capacity of air to hold water vapor depends strongly on temperature, and is smaller in cold air (just as less sugar can dissolve in cold water). As warm humid air rises, it expands and cools, and since it then cannot hold as much water as before, the excess is forced out: Initially into the tiny droplets of clouds, then if the cooling is more drastic, into raindrops. The remaining air is drier and warmer--warmed by water vapor turning back to liquid and returning energy to its surroundings--and warmer air is better able to radiate its heat into space. That is how water, clouds and rain play a major role in the transport of solar heat from the ground back to space and help create the complex patterns of weather and climate.
Additional ExploringA very extensive master list of web sites related to weather, climate and the oceans, Wind and Sea
Two recent books discuss the history of the greenhouse effect:
|
An optional, more detailed discussion: (S-1A) Weather and the Atmosphere
Next Stop: (S-2) Our View of the Sun
############################
An optional extension of section (S-1) "Sunlight and the Earth." A more detailed (but qualitative) discussion of heat flow in the atmosphere and related weather processes, including the roles of buoyancy, convection and humidity.
Ecclesiastes, ch. 1, v.6
Pressure and ConvectionLet us start with the flow of air. Suppose a "parcel of air" is heated near the ground (by conduction of heat, the flow of heat due to direct contact). Heat makes it expand, it becomes less dense than the surrounding air and buoyant, and it rises like a hot-air balloon (or like a drop of oil in a bottle of water). At the higher levels of the atmosphere, this warm bubble again gives up its heat (to other flows or perhaps to cold space), cools down, and other bubbles coming from below push it to the side, where it descends again. (diagram on the board). Such a circulating flow is called convection. More generally, convection is any flow which
|
The important thing to remember when dealing with convective flows, is that the higher one is in the atmosphere, the lower are the pressure and density of the air. What compresses it is the weight of air above it which it must support. On top of Mt. Everest, less air is piled up on top and therefore the pressure is lower. At ground level, the compressing weight of the atmosphere amounts to about 1 kilogram on each square centimeter. That pressure does not bother our bodies, because the air inside us is at the same pressure, and the fluids of the body (like blood) do not compress easily. For the same reason, fish have no problems with depth--even at a depth of 100 meters, with a pressure 11 times larger (10 kilogram water above each square centimeter, plus the weight of the atmosphere) they feel no discomfort.
At an altitude of about 5 kilometers, only half the atmosphere is above us, the other half is below, so only the weight of half the atmosphere must be supported, and the pressure is reduced to one half. By "Boyle's law" (named for Robert Boyle, 1627-91), the density is also reduced to one half (ignoring any variation in temperature). Rising an additional 5 kilometers, the pressure again falls by half, to 1/4 of what it was on the ground, and at 15 kilometers, it is halved again to about 1/8. All this is approximate and depends on temperature, but the trend should be clear. The cabin of a jetliner flying at 10 km must be sealed and pressurized, because passengers breathing air at 1/4 the sea-level density would be starved for oxygen and might lose consciousness. On the very rare occasions when a jetliner loses its pressure, masks connected to oxygen canisters drop down automatically, allowing the passengers to breathe normally while the pilot quickly descends to a lower altitude. Weather |
|
(a) Local WeatherWhen the atmosphere is stable, the higher we go, the cooler the air is. Air is warmest near the ground, which absorbs receives heat from sunlight. It is coldest above the level where jetliners fly, at 10-15 kilometers, the region from where it radiates most of its heat into space. That is why mountaintops are cold and the highest mountains have snow on their tops.
How exactly does this happen? Suppose some "parcel of air" (dry air, for now--humidity is an additional factor, considered later) is heated by the ground and rises. Higher up the pressure is lower, so the air expands: but expansion cools it. Similarly, if for some reason the parcel is blown down, is is compressed again and heated by the compression. Such up-and-down motions happen all the time, and the net result is that when conditions are stable, the temperature drops at a steady rate as we go higher. The motion of the rising parcel of air depends on its surroundings. It always cools by expansion--but is it still warmer than the still air around it? If it is, it continues to rise; if not, it stops. As will be seen, this is where the humidity of air has an important effect.
|
(b) Global Weather.Convection also operates on a global scale. The greatest heating occurs near the equator, and air heated there rises and flows poleward, to cooler regions of the Earth.
|
The rotation of the Earth greatly modifies this flow, by the Coriolis effect, as explained below.
In the age of sailing ships, sea-captains took advantage of this system. Sailing from Spain to America, they would go closer to the equator, a more southern route that took advantage of the easterly "trade winds. " Sailing back home they would go further north and use the westerlies. The many Spanish wrecks off Florida, some containing quite rich cargo, were lost on this home voyage back to Spain, loaded with gold and silver from Mexico and South America. Jetliners flying across the US cannot swing quite as far. However, when flying west to east, their pilots often exploit the fast core of the westerlies, known as the jet stream and flowing at high altitudes. Flying westward they try to avoid the jet stream.
Instead of heating the Earth, sunlight can evaporate water from it--especially from the oceans, which cover most of the Earth's surface. Humid air may be viewed as containing additional energy, invested by the Sun when its heat evaporated the water. While heat drives convection, humidity may amplify it.
Hot humid air is what drives thunderstorms, and a warm ocean surface is also the traditional birthplace of violent tropical storms, known as hurricanes in America and typhoons in Asia.
|
We look at two examples of humidity in action.
Further ExploringStrictly for those interested in history: the original 1896 article in which Svante Arrhenius proposed the greenhouse effect. Note that carbon dioxide was then called "carbonic acid."
Tidbit: Who first wrote "Everybody talks about the weather, but nobody does anything about it"? Most would claim it was Mark Twain (just type the first 5 words into a search engine and see!), but it ain't necessarily so. It looks like Twain's style, but actually the words first appeared in an editorial in the Hartford (Conn.) Courant on 24 August 1897, written by Charles Dudley Warner. Warner was a good friend of Twain, who himself had lived in Hartford for many years (he left before 1897). He was a newspaperman in Hartford and the two had collaborated on an 1873 book "The Gilded Age." Warner is also remembered for other quotes, e.g. "Politics make strange bedfellows."
Concerning the quote, see on the web |
############################
Next Stop: (S-3) The Magnetic Sun
############################
The sunspots, they guessed, were clouds floating above the surface, blocking some of the sunlight. We now know that sunspots are darker than their surroundings because they are moderately cooler, since their intense magnetic fields somehow slow down the local flow of heat from the Sun's interior. The process which causes this is still unclear.
The magnetism of rare natural "lodestones" was known in ancient Greece--supposedly first noted in the town of Magnesia, from which comes the name. The magnetic compass (a Chinese discovery) was used by Columbus and other early navigators, but it was not until 1820 that a Danish professor, Hans Christian Oersted (pictured on the left), found by accident that an electric current in a wire could deflect a nearby compass needle (click here for the full story). A Frenchman, André-Marie Ampere, showed soon afterwards that the basic magnetic phenomenon was the force between two electric currents in parallel wires; they attracted each other when they flowed in the same direction, and repelled when they were opposed (click here for a more detailed discussion). Just as lines of latitude and longitude help us visualize positions on the Earth's globe, so magnetic field lines (originally named by Michael Faraday lines of force) help visualize the distribution of magnetic forces in 3-dimensional space. Imagine a compass needle which can freely turn in space to wherever the magnetic force tries to point it (such needles exist--see bottom of this web page). Magnetic field lines are then imaginary lines which mark the direction in which such a needle would point.
A compass needle, for instance, has two magnetic poles at its ends, of equal strength, the north-seeking (N) pole and the south-seeking (S) pole, named for the directions on Earth to which they tend to point. Suppose the needle is free to point anywhere in 3 dimensions. If placed near the north pole, it would everywhere point towards the pole, and field lines therefore converge there (see drawing). If placed near the south pole, it would point away from it in all directions, and therefore field lines would diverge there, coming out of the Earth in a pattern that is a mirror-image of the pattern at the north pole. In between the lines form big arches above the Earth's equator, with their ends anchored in opposite hemispheres. Any bar magnet has a pattern of field lines like that of the Earth, suggesting that the Earth acted as if a short but very powerful bar magnet was inside it. Actually such a magnet does not exist, and the pattern comes from electric currents in the Earth core, and slowly changes, year by year; still, the "terrestrial bar magnet" remains a useful visualization aid. When two bar magnets are brought together, their (N,S) poles attract each other, their (S,S) and (N,N) poles repel: thus if a bar magnet were hidden inside the Earth, its S pole would be the one that pointed northwards, attracting the N pole of the compass needle. This strange mix-up of terminologies often confuses students: it is best to recognize the mix-up exists and then to ignore it. Michael Faraday who in the early 1800s introduced the concept of magnetic field lines, believed that space in which magnetic forces could be observed was somehow modified. His was a somewhat mystical view, but later mathematical developments found it quite useful, and today we refer to such a region of space as a magnetic field.
Ever since then solar observers have carefully followed sunspot cycles, and have also reconstructed earlier cycles from available observations, defining a suitable "sunspot number" index to gauge the level of sunspot activity. The nature of sunspots remained unclear until 1908, when George Ellery Hale, using an instrument that observed the Sun in narrow ranges of color emitted by selected substances, reported that the light from sunspots was modified in ways that indicated it was produced in intense magnetic fields. Sunspot fields turned out to be as intense as the ones we find near the poles of iron magnets--but extending across regions many thousands of kilometers wide. In conventional units, the magnetic intensity intensity in them reached about 1500 gauss (0.15 Tesla), while the field near the surface of Earth is typically 0.3-0.5 gauss, depending on location. In interplanetary space at the orbit of Earth, the magnetic field (carried from the Sun by the solar wind) is much weaker, typically 0.00006 gauss, while at the orbits of the outer planets, it is 20 times weaker still. Yet even there the instruments of spacecraft such as Voyager 2 still measure it reliably. Sunspots display many interesting features. Generally (though not always) they appear in pairs, with opposite magnetic polarities. In half the solar cycles, the "leading" spot (in the direction of the Sun's rotation) will always have an N polarity, and the "following" spot an S polarity; then in the following cycle, polarities are always reversed. The general magnetic field, producing the Sun's north and south magnetic poles, also reverses polarity at each cycle, the reversal typically occuring 3 years after sunspot minimum. All these suggest that the 11-year cycle is a magnetic phenomenon. Astronomers believe that the electric currents which flow in the solar plasma and create those fields get their energy from the unequal rotation of the Sun--faster at the equator--which in its turn is driven by large-scale flows of the solar gas.
The fastest and most significant among these was the solar flare--a brightening of the chromosphere near a sunspot group, rising within minutes and typically lasting 10-30 minutes. Flares are usually observed in the red light emitted by hot hydrogen (Ha or "H-alpha line"), but it so happened that the first observation in 1859 was of a rare "white light flare" observable with an ordinary telescope (see here and here for the full story). This was followed 17 hours later by a huge magnetic storm, a world-wide disturbance of the Earth's magnetic field: something apparently was ejected from the Sun, and took that long to reach Earth. We now know that "something" was probably a fast-moving plasma cloud, plowing through the ordinary solar wind, which takes 4-5 days to cover the same distance. The arrival at Earth of such clouds, with the shock wave that forms ahead of them, can be quite dramatic (see here for one story). The most remarkable aspect of such activity is the speed with which it takes place. If a typical big flare spreads over 10,000 km in 10 minutes, it must propagate quite rapidly. Some of its features begin much more abruptly, e.g. the associated x-rays (observable from space) can rise in just a few seconds. All this suggests that the energy source is not the heat of the Sun, which spreads and changes rather gradually, but the intense magnetic fields of sunspots. (For more on these matters, see here.) Exploring further
A small bar magnet, on gimbals that allow it to point in any direction in space, can be procured from its manufacturer, Cochranes of Oxford, Ltd., Leafield, Oxford OX8 5NT, England. Two types are available, Mark 1 with jewelled bearings for $36.60, Mark 2 with simple bearings for $12.65. For details see their web site:
|
Next Stop: (S-4) The Many Colors of Sunlight
Optional Activity (S-3A) Plotting the Shapes of Interplanetary Magnetic Field Lines
############################
The Law of Field Line Preservation When a spacraft breaks away from the influence of the Earth's magnetic field into interplanetary space, it finds there a weak magnetic field. The field may be weak, but it extends over huge distances, and can have important effects. From the observed direction of interplanetary magnetic field lines, we believe this field comes from the Sun, carried by magnetic field lines dragged out by the solar wind. |
|
When some process moves plasma inside a magnetic field, what happens depends of the relative strength of the two. If the magnetic field is strong--as happens in the corona, close to the Sun--then it dominates, and determines where the plasma can or cannot go. That is why magnetic field-line loops tend to keep back the solar wind, unlike the outward-bound lines in the "coronal holes" between them. But if the field is weak, then the plasma rules and pushes the field lines around. A rule which is fairly well obeyed states then that if two or more ions start out located on the same field line, they will always share the same field line. If they then manage to move, the field line gets deformed.
|
Drawing Interplanetary Field lines Using this "law of field line preservation", we will now derive the shape of interplanetary magnetic field lines.
On that line mark points at distances 15/16", 2" and 3 3/8" on both sides of the y-axis, then draw radial lines from the center of the Sun through those points, extending them until they are 1/2" from the sides of the sheet or 1" from the top. For those used to metric units, let the radius of the Sun be 1 cm (diameter=2cm), the pencil line follows y=10 cm and the marks on it are at distances of approximately 23.7, 50.2 and 83.9 millimeters from the y-axis. Extend the lines until they reach within 1 cm of the sides or 3 cm of the top.)
Marking the Spokes
Spiral field lines
|
Postscript, 17 November 1999As noted at the beginning, two extreme modes exist in the interaction between a plasma and a magnetic field. If the plasma is rarefied, even if its particles have high energy, its motion is guided and channelled by magnetic field lines. On the other hand, if the plasma is dense and the magnetic field relatively weak--the situation in most of interplanetary space--instead of the magnetic field deforming the plasma's motion, that motion deforms the magnetic field.It was also noted that with increasing distance from the Sun, the spiral shape of interplanetary magnetic field lines becomes more and more tightly wound, until their shape differs little from circles. Both points were well illustrated by the phenomena that followed intense solar activity in April-May 1998, reported by Robert Decker of the Applied Physics Lab of the Johns Hopkins University in Maryland. That activity created a disturbance in the solar wind, as well as a flow of protons with energies about 1000 times that of the solar wind, and these were observed by a number of spacecraft--ACE at the L1 Lagrangian point (near Earth, distance from the Sun about 1 AU), by Ulysses (5 AU), and by Voyagers 1-2--Voyager 2 at 56 AU and Voyager 1 at 72 AU. The solar wind disturbance arrived at Voyager 1 about 7.5 months later, propagating radially at the velocity of the solar wind flow in which it was embedded. The protons, on the other hand, although they moved much faster, were relatively few in number, which forced them to spiral along field lines. They were observed by Voyager 1 after 6 months--1.5 months before the disturbance in the solar wind reached that distance--and Dr. Decker calculated that their spiral path took them 10 times around the Sun, a total distance of about 2000 AU.
|
Spectra of selected elements, © Donald E. Klipstein (see here for more) |
Trying out three-color combinations: (S4-A) Experimenting with Colors
Next Stop: (S-5) Waves and Photons
############################
Astronomers studying the Sun enjoy a big advantage: the object which they observe is very, very bright. It is therefore possible to extract from its light just one narrowly defined color--a single spectral line--and still have enough brightness left to give a detailed picture. Ever since George Ellery Hale in 1892 found a way to observe the Sun in this manner, astronomers have used it to look at the Sun in the light of hydrogen, calcium or helium. The detailed pictures of the Sun presented (for instance) on the world-wide web, the ones that show clouds, streaks, tufts and other structures, are all created in this manner. Other monochromatic images are obtained in extensions of the visible spectrum, e.g. UV, EUV (extreme UV) and X-rays. |
|
Next Stop: (S-6) Seeing the Sun in a New Light
############################
On right: Yohkoh X-ray image of the Sun. For bigger image, click here. As might have been expected, the brightest coronal emissions came from above active sunspot regions. Separating such bright patches were large dark areas, named "coronal holes"; they were appparently dark because of lower density and less heat dissipation in the lower corona. The discovery of coronal holes helped solve a long-outstanding puzzle. Long before Skylab, space probes such as Mariner 2 in 1962 detected fast streams in the solar wind, flowing not at 400 km/s but perhaps at 600 km/s or more. They tended to recur at intervals of 27 days--the rotation period of the low-latitude Sun--suggesting that whatever their source was, it rotated with the Sun. Even earlier, around the turn of the century, series of moderate magnetic storms were observed which tended to recur at 27-day intervals, prevalent not near the peak of the sunspot cycle but, perversely, near its minimum. Skylab showed that both phenomena were associated not with sunspots but with the dark areas of coronal holes, which also seemed to contribute much of the solar wind. Apparently loops of magnetic field lines above sunspots help trap plasma (a bit like they do in the Earth's radiation belt) and hold it back.
Field lines of coronal holes, on the other hand, seem to extend far outwards, their ends dragged by the solar wind to the Earth's orbit and far beyond it. Since plasma motion tends to be guided by magnetic field lines, such lines provide an easy exit to solar wind plasma. Above the poles of the Sun, as already noted, field lines stick nearly straight out, creating two large, permanent "coronal holes. " As expected, the space probe Ulysses found those regions filled with fast-moving solar wind, similar to the kind observed in solar wind streams.
The problem was that CMEs are best observed when they move across the line of view, rising above the flanks of the Sun, and clouds moving that way will not hit Earth. At the end of 1983, however, the magnetospheric probe ISEE-3 (International Sun-Earth Explorer 3) pulled away from Earth towards comet Giacobini-Zinner, and some time later was sufficiently far from Earth to intercept such CMEs. It confirmed that their signatures were similar to those of plasma clouds near Earth.
In the future NASA plans to conduct such observations from twin sun-observing spacecraft of the "Solar Stereo" mission. Located on the Earth's orbit but 60° ahead and behind it (at the L4 and L5 Lagrangian points of the Earth-Sun system), the cameras on these spacecraft will be able to observe CMEs heading for Earth and even (because of their different vantage points) obtain some information about their 3-dimensional structure.
More recently the Sun has been monitored in EUV and X-rays by Yohkoh, a highly successful Japanese satellite. Its images give a clear and detailed view of coronal holes, coronal bright spots and CMEs.
Another notable observer of CMEs has been the LASCO instrument aboard the SOHO spacecraft, stationed at the Lagrangian L1 point, sunward of Earth. For some SOHO images, see here and here. Sophisticated image-enhancement procedures on LASCO images made it possible for SOHO investigators to see CMEs even when headed towards Earth; an example can be seen here.
With all these modes of observation, a great deal was learned about CME since 1973, and it is now believed that much of the magnetic storm activity at Earth formerly credited to flares is actually associated with CMEs. Their energy apparently comes from the coronal magnetic field, and their material from prominences which are blown away by the process. They need not arise in sunspot regions.
Exploring Further: Click here to reach a web site which covers CMEs in greater details than is done here.
Physicists on Earth use electromagnetic devices--high-energy accelerators--to accelerate electrons, protons and other electrically charged particles to great velocities, in order to study their collisions with matter and so learn about their make-up and about the forces that bind them. Some pretty sophisticated accelerator tools is needed for this, but it appears that Nature, too, can do so. This is shown when flare events, once or twice per year during active parts of the solar cycle, emit streams of high-energy ions and electrons, which can flood interplanetary space for some hours, even at the Earth's orbit and beyond it. CME shocks may also do so, and the relative roles of CME and flares is still being debated. For more about such events, see here.
NASA is rightly worried about such particles. They do not threaten life on Earth, which is shielded by a thick atmosphere. Even astronauts in space stations near the Earth's equator are shielded, by the Earth's magnetic field. However, any humans beyond the Earth's inner magnetosphere--for instance, in transit between Earth and Mars--would need to be sheltered in some way.
The way those accelerations occur is still unclear, but it is widely held that they are associated with small regions in space in which magnetic fields from adjoining sources (e.g. sunspot groups) cancel each other, creating "neutral points" of zero field intensity. Such points--unfortunately for experimenters--are usually well above the photosphere, in region whose magnetic fields are difficult to measure. Acceleration may also occur at shocks associated with CMEs.
Some information about accelerated particles may however be deduced from the radiation they emit: fast electrons, in particular, excel in producing x-rays. Medical x-rays are produced when beams of fast electrons, created inside a tube from which all air has been evacuated, come to a sudden stop against a metal target; on the Sun, when fast electrons are stopped by the surrounding gas, a similar process takes place. Such x-rays can rise much faster than other flare emissions--a minute in some cases, but only a second or two in others.
In one such event (picture on right), Yohkoh actually observed the position of an x-ray burst, localized at the top of a magnetic arch, well above the limb (edge) of the visible Sun. Note that in the picture, two places are particularly bright--the top of the arch, where the acceleration (presumably) took place, and one "foot" at the bottom, where such electrons enter the denser layers of the Sun's atmosphere.
For instance, waves emitted by electron and ion beams traveling outwards from the Sun are regularly tracked. Also, rising microwave radiation from above sunspot groups is often a good warning that "something is brewing. "
He then showed that a large fraction of the discoveries in astronomy were associated with some sort of improved coverage of the electromagnetic spectrum: new wavelength ranges (e.g. radio, x-rays) or better resolution (e.g. larger, better telescopes). He therefore recommended to NASA to concentrate its space astronomy efforts on extending that coverage, and NASA has largely followed his lead. Each of NASA's "great observatories"--e.g. Compton for gamma rays, Hubble for the visible and near-visible spectrum, Chandra for x-rays--has targeted a certain spectral region and tried to extend its coverage. The results have been very rewarding, but they are beyond the scope of this presentation, which is focused on the Sun.
|
Next Stop: (S-7) The Energy of the Sun
############################
The Sun is the source of most of the energy on Earth--the power source for plants, the cause of flows of atmosphere and of water, the source of the warmth which makes life possible. None would exist without it. At the Earth's orbit, neglecting absorption by the atmosphere, each square meter of area facing the Sun receives about 1380 joules per second (nearly 2 horsepower). That quantity is known as the solar constant and sensors aboard NASA's satellites over the 1979-99 interval suggest it varied by only about 0.2% (see graphs in Nature, vol 401, p. 841, 28 October 1999) . But what powers the Sun itself? How much longer will it shine, before its fuel runs out? For how long has it given out its energy? The first to consider these questions seriously was the great German physicist Hermann von Helmholtz, who noted in 1854 that the Sun's own gravity could supply an appreciable amount of energy. If the Sun were gradually shrinking--if all its matter was gradually falling towards its center--enough energy could be released to keep it radiating for a fairly long time. He calculated that this source could provide the Sun's energy for times of the order of up to 20 million years. Then radioactivity was discovered, the decay of heavy elements into lighter ones through the emission of fast particles, containing a great deal of energy. As it turned out, it was this energy, from radioactive elements in rocks, that provided the internal heat of the Earth. Radioactivity also allowed new estimates of the age of the Earth, since the amount of accumulated decay products in ores indicated how long the process had been going on. This suggested the Earth was much older than Helmholtz'es estimate, perhaps billions of years old. Could perhaps the new source of internal energy also supply the Sun's needs for such a long time?
Electrons and nuclei were kept together by electric attraction (negative attracts positive). Furthermore, electrons were sometimes shared by neighboring atoms or transferred to them (by processes of quantum physics), and this link between atoms gave our world its many chemical compounds.
But something else was needed to hold nuclei together, since all protons carried positive charges and repelled each other. Electric forces are definitely not the glue that holds nuclei together, they act in the wrong direction! Besides, binding neutrons to nuclei clearly requires a non-electrical attraction. |
As we go on to elements heavier than oxygen, the energy which can be gained by assembling them from lighter elements decreases, up to iron. For nuclei heavier than iron, one actually gains energy by breaking them up into 2 fragments. That, of course, is how energy is extracted by breaking up uranium nuclei in nuclear power reactors. The reason the trend reverses after iron is the growing positive charge of the nuclei. The electric force may be weaker than the nuclear force, but its range is greater: in an iron nucleus, each proton repels 25 other nuclei, while (one may argue) the nuclear force only binds close neighbors.
As nuclei grow bigger still, this disruptive effect becomes steadily more significant. By the time uranium is reached (92 protons), nuclei can no longer accomodate their large positive charge, but emit their excess protons in the process of alpha radioactivity--the emission of helium nuclei, each containing two protons and two neutrons. (Helium nuclei are an especially stable combination, as evidenced by the peak they form on the curve of binding energy above!) Still heavier nuclei are not found naturally on Earth.
Heat is the motion of atoms and molecules: the higher the temperature, the greater is their velocity and the more violent are their collisions. When the temperature at the center of the newly-formed Sun became great enough for collisions between nuclei to overcome their electric repulsion, nuclei began to stick together and protons were combined into helium, with some protons changing in the process to neutrons (plus positrons, positive electrons, which combine with electrons and are destroyed). This released nuclear energy and kept up the high temperature of the Sun's core, and the heat also kept the gas pressure high, keeping the Sun puffed up and stopping gravity from pulling it together any more.
That, in greatly simplified terms, is the "nuclear fusion" process which still takes place inside the Sun. Different nuclear reactions may predominate at different stages of the Sun's existence, including the proton-proton reaction and the carbon-nitrogen cycle which involves heavier nuclei, but whose final product is still the combination of protons to form helium. A more detailed qualitative account, by astrophysicists of the University of California at Berkeley, can be reached here.
A branch of physics, the study of "controlled nuclear fusion," has tried since the 1950s to derive useful power from "nuclear fusion" reactions which combine small nuclei into bigger ones--power to heat boilers, whose steam could turn turbines and produce electricity. Unfortunately, no earthly laboratory can match one feature of the solar powerhouse--the great mass of the Sun, whose weight keeps the hot plasma compressed and confines the "nuclear furnace" to the Sun's core. Instead, physicists use strong magnetic fields to confine the plasma, and for fuel they use heavy forms of hydrogen, which "burn" more easily. Still, magnetic traps can be rather unstable, and any plasma hot enough and dense enough to undergo nuclear fusion tends to slip out of them after a short time. Even with ingenious tricks, the confinement in most cases lasts only a small fraction of a second.
The Sun today still consists mostly of hydrogen. The fuel supply which has seen it through its first 5 billion years should be good for about as long in the future.
All such stars burn hydrogen to produce helium, where "burn" refers to nuclear processes, not to the (completely inadequate) chemical process of fire. Big stars burn rapidly and brightly, like the candle in Edna St. Vincent Millay's poem |
My candle burns at both ends; It will not last the night; But ah, my foes, and oh, my friends It gives a lovely light! |
Small stars last longer and many are dim; but whatever a star's size, ultimately it runs out of hydrogen. It can still release energy by "burning" heavier nuclei and combining them into bigger ones, up to iron: theory suggests this does happen, but it provides much less energy and does not greatly extend the star's lifetime. When all the fuel is gone, gravity again becomes the dominant source of energy, and the star again begins collapsing inwards. The Earth keeps its size because its gravity is not strong enough to crush the minerals of which it consists. Not so with a star massive enough to sustain nuclear burning. A small star may crush all its atoms together, creating a "white dwarf"--e.g. of half the mass of the Sun, but only as big as the Earth. Some energy release continues (hence "white") but ultimately, the star probably becomes a dark cinder.
This may be the fate of our Sun, too. In the final transition strange changes occur--the star becomes a "red giant," diffuse and enormously large, and later much of the material is blown to space where it forms a "planetary" nebula, but there is no explosion. See "The Complexity of Stellar Death" by Yervant Terzian, "Science" vol. 256 p. 425-6, 15 October 1999.
That catastrophic event is known as a supernova explosion (technically, a "type 2 supernova"). Tycho Brahe was fortunate to have seen one that occured in our galaxy, outshining Venus and visible even in the daytime. The Chinese observed one in the year 1054, in the Crab constellation of the zodiac, and still another occured in Kepler's lifetime. Since then, however, none seemed to have occured close to Earth. The most notable event of this type was observed (quite extensively) in 1987 in the Large Magellanic Cloud, a small galaxy neighboring ours (see image above; the inner cloud is the one produced in the explosion, the rings seem older). For more about supernovas, see here The material blown off by a supernova explosion ultimately scatters throughout space, and some of it is incorporated in clouds of dust and gas which later form new suns and planets. All elements on Earth heavier than helium (except, possibly, a small amount of lithium) must have arrived that way: products of nuclear burning in some pre-solar star, released or created in the explosion accompanying its final collapse. Our bodies are made of star stuff--carbon, oxygen, nitrogen and the rest have all been produced by nuclear fusion.
As for the "supernova remnant" left over from the collapse, its fate depends on its mass. If the star was not too massive, the remnant (as explained) is a neutron star. It that star originally rotated around its axis, that rotation is enormously speeded up; the remnant of the supernova of the year 1054 (its ejected cloud, the "Crab Nebula," is shown on the left) is spinning at about 30 revolutions per second! Any magnetic field of the original star is also enormously amplified, and associated phenomena can make it beam radio waves. Pulsars, pulsed radio sources with remarkably stable pulsation periods, are produced that way.
Theory suggests that a star much more massive than the Sun will collapse even further and become a black hole. What happens then can only be guessed and calculated, not observed, for the star's gravity in the collapsed state is so strong that no light and no information can return from it to the outside world. One therefore expects such objects to be completely black; they are called "black holes" because the general theory of relativity suggests that the matter in such a star keeps falling indefinitely, as the star contracts to a point. Thus in theory such stars are like the proverbial bottomless pit, although no observation could ever confirm it.
Although astronomers cannot see such objects, they have considerable evidence that they exist, at least in a number of locations. A very massive black hole may exist at the center of our galaxy, and if so, probably also at the centers of other galaxies, helping hold them together.
This concludes our discussion of the Sun. "From Stargazers to Starships" continues with sections dealing with spaceflight and spacecraft, starting with The Principle of the Rocket
However... you may want to extend what you have learned Also, a brief historical review of the evolution of our knowledge about atoms and nuclei is provided in (LS-7A) The Discovery of Atoms and Nuclei
|
############################
What follows is a brief list of benchmarks and discoveries that shaped our ideas on atoms and nuclei. It supplements lesson plan Lsun7erg, attached to section S-7 "The Energy of the Sun""From Stargazers to Starships."
|
(The table below may be written by the teacher on the board and copied by the students, with the comment "this will not be on any test." Or else, paper copies may be distributed. Compare this list to a longer one on another web site.) |
1 | John Dalton | 1803-8 | Atomic theory from chemistry |
2 | Humphrey Davy | 1807 | Electric separation of Sodium |
3 | Amadeo Avogadro | 1811 | Atoms and the laws of gases |
4 | Michael Faraday | 1833 | Laws of electrolysis |
5 | Stanislao Cannizzaro | 1860 | Rediscovery of Avogadro's law |
6 | Henri Becquerel | 1895 | Radioactivity |
7 | J.J. Thompson | 1897 | Discovery of electrons |
8 | Ernest Rutherford | 1911 | Discovery of compact nuclei |
9 | James Chadwick | 1932 | Discovery of the neutron |
10 | Hans Bethe | 1938 | Sun powered by Nuclear Fusion |
Listed below are a few comments on each item on the list. To do justice to this subject might require a one-semester university course.
|
The ideas from section S-7 are reviewed in what follows next. The rest of the section is a qualitative discussion of all key processes involved in the practical use nuclear energy. A Review of Nuclear StructureThe way the Sun generates its energy helps understand the way a nuclear power station does so. The two processes are however quite different. Here some facts about the way protons and neutrons combine to form nuclei, as covered in section S-7 about the Sun:
In summary, then: iron nuclei are the most stable ones, and the best sources of energy are therefore nuclei as far removed from iron as possible. One can combine the lightest ones--nuclei of hydrogen (protons)--to form nuclei of helium, and that is how the Sun gets its energy. Or else one can break up the heaviest ones--nuclei of uranium--into smaller fragments, and that is what nuclear power companies do.
How many Protons, how many Neutrons?As already noted, protons and neutrons (jointly called "nucleons") are intrinsically similar, and can convert into each other, absorbing or emitting an electron to maintain proper electric charge. What determines how many of each are found in a nucleus?The nuclear forces apparently prefer equal numbers of each kind, and light nuclei--helium, carbon, nitrogen, oxygen--usually maintain a 50:50 ratio, although nuclear variants ("isotopes") with small deviations from equality may exist and may be stable. In heavier nuclei, because of the electric repulsion between protons, this equality no longer holds. Imagine a nucleus with 56 nucleons, and suppose we could choose how many of this total would be neutrons and how many protons. What would be the most stable combination? Choosing 28 of each kind might provide the most stable nuclear binding, but that is offset by the energy required to hold in close quarters 28 positive protons. So nature compromises: the preferred combination--the nucleus of the most common form of iron--has 30 neutrons but only 26 protons. As nuclei get heavier, the fraction of protons drops still further--about 45% in mid-range nuclei, and less than 40% in the heaviest ones, those of uranium. Ordinary uranium ("U-238") has 92 protons but 146 neutrons, for a total of 238 nucleons. As will be seen, this gradual change in the proton/neutron ratio is essential to the nuclear chain reaction.
Nuclear FissionUranium nuclei in nature are unstable. Each of their 92 protons repels the rest, and sooner or later (half of them within 4.5 billion years) they eject a positive fragment, an "alpha particle" which is another term for a rapidly moving nucleus of helium. Almost all the helium atoms we extract from natural gas and from rocks--for filling balloons and for other uses--were originally created as alpha particles. But there exists a way of speeding up this break-up, by exposing the material to free neutrons.
Such an attraction releases energy. If the nucleus is heavy and unstable, like that of uranium, adding energy destabilizes it even more, to where it may break up immediately. The interesting thing about such a break-up is the spectacular way in which it sometimes happens, as was discovered by Hahn and Meitner in 1939. Instead of breaking off a little chip, a helium nucleus containing less than 2% of the mass, the entire nucleus splits into 2 comparable fragments, typically containing 1/3 and 2/3 of the mass. This process is called nuclear fission and besides the speed with which it can take place, it has at least two other remarkable features:
Ordinarily, such an adjustment calls for the conversion of some neutrons into protons (plus emitted electrons, "beta rays"), a process known as "beta radioactivity." Such an adjustment does in fact occur, making such fragments fiercely radioactive, and turning their disposal into a major issue for the nuclear power industry. But at first, when the nucleus breaks up, the fragments are too unstable for such a gradual process. A quicker adjustment is needed, and the fragments achieve it by each emitting one or sometimes more free neutrons. The Chain ReactionOn the average, about two neutrons are released this way per fission event. But it takes only one neutron to initiate another fission! Thus if fissionable nuclei are so densely packed that each neutron is bound to produce a new fission, the number of fission events quickly multiplies: 2, 4, 8, 16, 32, 64, 128... Since the energy release is proportional to the rate of fission, it also grows--very quickly! This chain reaction is what makes a nuclear bomb (or "atomic bomb") function. The material with nuclei prone for fission--usually plutonium, an artificial heavy elements with 94 protons--must be compressed tightly and at the appropriate moment, exposed to a blast of neutrons. A variety of tricks, all of them top secret, is used to make sure that at least an appreciable fraction of its atoms undergoes fission before the whole thing blows apart. Commercial nuclear power is produced somewhat differently, in a more controlled fashion. The fuel is uranium 235 (U-235)--a variant ("isotope") with 92 protons but only 143 neutrons, not 146, an odd number which makes it less stable. Natural uranium consists mostly of U-238, and it can absorb a neutron without undergoing fission (it ultimately turns into plutonium). U-238 therefore will not support a chain reaction. However, 0.7% of uranium is U-235, which can fission as soon as it absorbs a neutron. |
By using a clever design, one can actually build a reactor fueled by natural uranium. The trick is to form the fuel into rods, and put between them some material ("moderator") which slows down neutrons but does not absorb them, e.g. pure carbon or "heavy water" containing the heavy isotope of hydrogen. Neutrons produced in a rod generally escape into the moderator, and by the time they hit another rod, they are moving very slowly: such slow neutrons are gobbled up much more avidly by U-235 than by U-238, so that even in a rod containing only 0.7% U-235, the U-235 atoms make most of the "catches. " The Critical Mass |
It should be added that many neutrons are also lost--escaping from the edges of the reactor into the surrounding material, or being absorbed inside it by the " wrong " nuclei, the ones which do not undergo fission. In fact, a reactor needs to be carefully designed to sustain a chain reaction in the first place: but it can be done. From the beginning, complex and very expensive methods were devised to separate U-235 or to enrich its percentage past 0.7%. Today all commercial power reactors use enriched fuel, which makes the design of reactors easier and more controllable. With enriched fuel, ordinary water can serve as moderator, and it is even feasible to combine moderator and fuel, dissolving some uranium compound in water which acts both as moderator and as a distributor of heat. Such a reactor--or a chunk of plutonium--will not support a chain reaction if it is too small. If the amount of fissionable material is less than a critical mass, the average fission occurs too close to the surface. Even though (say) 2 neutrons are produced in each fission, on the average 1.2 of them escape to the outside before hitting another nucleus, leaving only 0.8 neutrons to continue the process, whereas one or more are needed. When processing nuclear fuel, or reprocessing fuel rods, it is therefore essential to work only with small quantities to prevent any accidental chain reaction. On 30 September 1999, at the nuclear processing plant in Tokaimura, Japan, workers thought they would save time by combining several batches of a solution of uranium. With a flash of blue light, a chain reaction began, giving three workers very bad doses of radiation and lasting 18 hours. After 3 months one worker died (in spite of extreme measures), one was discharged from the hospital and one is still (as of 12/99) in intensive care. A detailed report on the accident ("What Happened in Tokaimura?") appeared in "Physics Today", December 1999, p. 52-4. A similar accident occured in the US in the 1950s, when a worker extracting plutonium from a solution in one liquid into another took a shortcut and combined several batches. He died of radiation exposure within two days.
The Controlled Nuclear ReactorBecause a nuclear reactor requires neutrons that have slowed down, it has a built-in delay and cannot explode like a nuclear bomb (even if scary films claim otherwise). Still, the chain reaction can grow very rapidly, and unless it is controlled, the reactor could in principle heat up to where it melts down. The usual method of control is to insert among the fuel "control rods" which strongly aborb neutrons--e.g. of the metal cadmium, also used in electroplating. By absorbing free neutrons, these rods slow down or stop the chain reaction. Fortunately, nature has been helpful here. About 1% of the neutrons released in fission are not emitted promptly but are delayed, by a fraction of a second. Reactors are always operated to produce just barely enough neutrons to sustain a chain reaction. If for some reason the heat output starts to rise, the delayed neutrons slow down the rate of increase to where an automatic mechanism lowering or raising the control rods is fast enough to stop it. |
Power reactors in the US use ordinary water as a moderator, inside a "pressure vessel" made of thick steel, with rod-like fuel elements and control rods fitted through openings in its lid. To start the chain reaction Is this the energy of the future? As of this writing (1999) France gets 75% of its energy from nuclear power, and many industrial countries, short on coal and oil, also obtain an appreciable fraction of their energy this way--e.g. 1/3 of the energy used in Japan and Spain. In the US, after an enthusiastic start, the use of nuclear power has leveled off to about 20% of the power generated, mainly due to public resistance to nuclear energy. The US however is fortunate in having large reserves of coal: its growing energy consumption is largely met by these fuels. Environmentally, the choice is between two alternatives:
|
It is not easy to choose, and if we reject both options, we can expect much higher power costs and much less available power. Nuclear WasteThe trouble with fission power is that the "fission fragments" from the break-up of uranium or plutonium are very "hot, " extremely radioactive. This creates two serious problems:
Nuclear AccidentsSuppose something went wrong with the cooling mechanism. Automatically, of course, control rods are lowered and any chain reaction stops immediately. But the radioactive waste in the reactor core continues to generate heat, so that cooling must still be provided for some hours, if not days. On 28 March 1979, at the nuclear power station at Three Mile Island, outside Harrisburg, Pennsylvania, a minor malfunction led to a series of errors, shutting down for a while both the main and emergency cooling systems. The residual heat of the nuclear wastes melted part of the core and created (by chemical reaction) free hydrogen, which further complicated the situation. The billion-dollar reactor was a total loss, but the worst damage was probably to the public's trust in the safety of nuclear power. Still, the reactor vessel was not breached, and the second line of defense, the heavy concrete "containment building" inside which it was housed, also remained intact. The power reactor at Chernobyl, near Kiev, capital of the Ukraine, had a different design--like Fermi's original reactor, it used a pile of carbon (graphite) to slow down neutrons, with pipes inside it carrying the fuel rods, control rods and cooling water. It was a big reactor, and was not enclosed in a containment building. On 25 April 1986, an unwise engineering experiment at low power got out of control. The power level surged, the reactor vessel burst, and the hot steam and graphite (as well as combustible zirconium metal used in the fuel rods) reacted with hot steam and with oxygen of the atmosphere to produce an intense fire, whose plume rose to high altitudes and spread radioactive debris over a wide area. Of the fire-fighters called to extinguish the fire, many later died from radiation. Towns and villages near Chernobyl had to be evacuated (they remain empty as of 1999) and agricultural produce over much of Europe was contaminated. The remains of the reactor were later encased in a thick cover of concrete, entombing the radioactive waste left inside it. Since these accidents, nuclear power generation in the US has proceeded without any major mishap. However, nuclear waste is still kept in temporary storage, as the national policy for its treatment and disposal continues to be debated. The other reactor at at Three Mile Island (and even the ones at Chernobyl) have been restarted to supply power again. As the example of France suggests, nuclear power can be the main energy source of an industrial nation, though it calls for a high level of professional competence and carefully designed safety features. At the same time, the accidents at Three Mile Island and Chernobyl are a reminder that this power source carries unique risks of its own. Further ExploringIf you have the time and the motivation, an enormous number of sources can give you more detailed information about matters discussed here, both in print and on the web. You might start with this rather detailed web site, comparable in size to the entire "Stargazers" collection!
"From Stargazers to Starships" continues with sections dealing with spaceflight and spacecraft, starting with The Principle of the Rocket |
Author and curator: David P. Stern, u5dps@lepvax.gsfc.nasa.gov
This joined version created 8 June 2001